""" SloIE is a manually labelled dataset of Slovene idiomatic expressions. """ import os import datasets _CITATION = """\ @article{skvorc2022mice, title = {MICE: Mining Idioms with Contextual Embeddings}, journal = {Knowledge-Based Systems}, volume = {235}, pages = {107606}, year = {2022}, issn = {0950-7051}, doi = {https://doi.org/10.1016/j.knosys.2021.107606}, url = {https://www.sciencedirect.com/science/article/pii/S0950705121008686}, author = {{\v S}kvorc, Tadej and Gantar, Polona and Robnik-{\v S}ikonja, Marko}, } """ _DESCRIPTION = """\ SloIE is a manually labelled dataset of Slovene idiomatic expressions. It contains 29,400 sentences with 75 different expressions that can occur with either a literal or an idiomatic meaning, with appropriate manual annotations for each token. The idiomatic expressions were selected from the Slovene Lexical Database (http://hdl.handle.net/11356/1030). Only expressions that can occur with both a literal and an idiomatic meaning were selected. The sentences were extracted from the Gigafida corpus. """ _HOMEPAGE = "http://hdl.handle.net/11356/1030" _LICENSE = "Creative Commons - Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)" _URLS = { "sloie": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1335/SloIE.zip" } class SloIE(datasets.GeneratorBasedBuilder): """ SloIE is a manually labelled dataset of Slovene idiomatic expressions. """ VERSION = datasets.Version("1.0.0") def _info(self): features = datasets.Features( { "sentence": datasets.Value("string"), "expression": datasets.Value("string"), "word_order": datasets.Sequence(datasets.Value("int32")), "sentence_words": datasets.Sequence(datasets.Value("string")), "is_idiom": datasets.Sequence(datasets.Value("string")) } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): urls = _URLS["sloie"] data_dir = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"file_path": os.path.join(data_dir, "SloIE.txt")} ) ] def _generate_examples(self, file_path): idx_instance = 0 with open(file_path, "r", encoding="utf-8") as f: line = f.readline().strip() while line: assert line.startswith("#") sent = line[1:] # Remove initial "#" word_order = list(map(int, f.readline().strip().split(" "))) expression = "" sentence_words, idiomaticity = [], [] line = f.readline().strip() while line: token_info = line.split("\t") word, is_idiomatic_str, expression = token_info sentence_words.append(word) idiomaticity.append(is_idiomatic_str) line = f.readline().strip() # Encountered start of the next sentence - Note that "#" may also be an annotated word, hence the second condition if line.startswith("#") and len(line.split("\t")) == 1: break yield idx_instance, { "sentence": sent, "expression": expression, "word_order": word_order, "sentence_words": sentence_words, "is_idiom": idiomaticity } idx_instance += 1