Datasets:
Tasks:
Text Classification
Sub-tasks:
sentiment-classification
Languages:
Slovenian
Size:
100K - 1M
License:
Matej Klemen
commited on
Commit
·
9db7fcc
1
Parent(s):
aa8054c
First version of SentiNews dataset
Browse files- dataset_infos.json +1 -0
- sentinews.py +93 -0
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"document_level": {"description": "SentiNews is a Slovenian sentiment classification dataset, consisting of news articles manually annotated with their \nsentiment by between 2 and 6 annotators. The news articles contain political, business, economic and financial content \nfrom the Slovenian news portals 24ur, Dnevnik, Finance, Rtvslo, and \u017durnal24. The texts were annotated using the \nfive-level Lickert scale (1 \u2013 very negative, 2 \u2013 negative, 3 \u2013 neutral, 4 \u2013 positive, and 5 \u2013 very positive) on three \nlevels of granularity, i.e. on the document, paragraph, and sentence level. The final sentiment is determined using \nthe following criterion: negative (if average of scores \u2264 2.4); neutral (if average of scores is between 2.4 and 3.6); \npositive (average of annotated scores \u2265 3.6).\n", "citation": "@article{buvcar2018annotated, \n title={Annotated news corpora and a lexicon for sentiment analysis in Slovene}, \n author={Bu{\u000b{c}}ar, Jo{\u000b{z}}e and {\u000b{Z}}nidar{\u000b{s}}i{\u000b{c}}, Martin and Povh, Janez}, \n journal={Language Resources and Evaluation}, \n volume={52}, \n number={3}, \n pages={895--919}, \n year={2018}, \n publisher={Springer}\n}\n", "homepage": "https://github.com/19Joey85/Sentiment-annotated-news-corpus-and-sentiment-lexicon-in-Slovene/", "license": "Creative Commons - Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)", "features": {"nid": {"dtype": "uint16", "id": null, "_type": "Value"}, "content": {"dtype": "string", "id": null, "_type": "Value"}, "sentiment": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "content", "output": "sentiment"}, "task_templates": null, "builder_name": "sentinews", "config_name": "document_level", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 21726849, "num_examples": 10427, "dataset_name": "sentinews"}}, "download_checksums": {"https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1110/SentiNews_document-level.txt": {"num_bytes": 23755522, "checksum": "060fe71d719d79e3bcba335abfc146485fa2f3568b5cc1245bd694834d77190c"}}, "download_size": 23755522, "post_processing_size": null, "dataset_size": 21726849, "size_in_bytes": 45482371}, "paragraph_level": {"description": "SentiNews is a Slovenian sentiment classification dataset, consisting of news articles manually annotated with their \nsentiment by between 2 and 6 annotators. The news articles contain political, business, economic and financial content \nfrom the Slovenian news portals 24ur, Dnevnik, Finance, Rtvslo, and \u017durnal24. The texts were annotated using the \nfive-level Lickert scale (1 \u2013 very negative, 2 \u2013 negative, 3 \u2013 neutral, 4 \u2013 positive, and 5 \u2013 very positive) on three \nlevels of granularity, i.e. on the document, paragraph, and sentence level. The final sentiment is determined using \nthe following criterion: negative (if average of scores \u2264 2.4); neutral (if average of scores is between 2.4 and 3.6); \npositive (average of annotated scores \u2265 3.6).\n", "citation": "@article{buvcar2018annotated, \n title={Annotated news corpora and a lexicon for sentiment analysis in Slovene}, \n author={Bu{\u000b{c}}ar, Jo{\u000b{z}}e and {\u000b{Z}}nidar{\u000b{s}}i{\u000b{c}}, Martin and Povh, Janez}, \n journal={Language Resources and Evaluation}, \n volume={52}, \n number={3}, \n pages={895--919}, \n year={2018}, \n publisher={Springer}\n}\n", "homepage": "https://github.com/19Joey85/Sentiment-annotated-news-corpus-and-sentiment-lexicon-in-Slovene/", "license": "Creative Commons - Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)", "features": {"nid": {"dtype": "uint16", "id": null, "_type": "Value"}, "content": {"dtype": "string", "id": null, "_type": "Value"}, "sentiment": {"dtype": "string", "id": null, "_type": "Value"}, "pid": {"dtype": "uint8", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "content", "output": "sentiment"}, "task_templates": null, "builder_name": "sentinews", "config_name": "paragraph_level", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 23107429, "num_examples": 89999, "dataset_name": "sentinews"}}, "download_checksums": {"https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1110/SentiNews_paragraph-level.txt": {"num_bytes": 24342387, "checksum": "c45535325db5a6ef5073d7a594c68e5a5c60983d2e1b277f0dbf76f9975a9f18"}}, "download_size": 24342387, "post_processing_size": null, "dataset_size": 23107429, "size_in_bytes": 47449816}, "sentence_level": {"description": "SentiNews is a Slovenian sentiment classification dataset, consisting of news articles manually annotated with their \nsentiment by between 2 and 6 annotators. The news articles contain political, business, economic and financial content \nfrom the Slovenian news portals 24ur, Dnevnik, Finance, Rtvslo, and \u017durnal24. The texts were annotated using the \nfive-level Lickert scale (1 \u2013 very negative, 2 \u2013 negative, 3 \u2013 neutral, 4 \u2013 positive, and 5 \u2013 very positive) on three \nlevels of granularity, i.e. on the document, paragraph, and sentence level. The final sentiment is determined using \nthe following criterion: negative (if average of scores \u2264 2.4); neutral (if average of scores is between 2.4 and 3.6); \npositive (average of annotated scores \u2265 3.6).\n", "citation": "@article{buvcar2018annotated, \n title={Annotated news corpora and a lexicon for sentiment analysis in Slovene}, \n author={Bu{\u000b{c}}ar, Jo{\u000b{z}}e and {\u000b{Z}}nidar{\u000b{s}}i{\u000b{c}}, Martin and Povh, Janez}, \n journal={Language Resources and Evaluation}, \n volume={52}, \n number={3}, \n pages={895--919}, \n year={2018}, \n publisher={Springer}\n}\n", "homepage": "https://github.com/19Joey85/Sentiment-annotated-news-corpus-and-sentiment-lexicon-in-Slovene/", "license": "Creative Commons - Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)", "features": {"nid": {"dtype": "uint16", "id": null, "_type": "Value"}, "content": {"dtype": "string", "id": null, "_type": "Value"}, "sentiment": {"dtype": "string", "id": null, "_type": "Value"}, "pid": {"dtype": "uint8", "id": null, "_type": "Value"}, "sid": {"dtype": "uint8", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "content", "output": "sentiment"}, "task_templates": null, "builder_name": "sentinews", "config_name": "sentence_level", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 24641935, "num_examples": 168899, "dataset_name": "sentinews"}}, "download_checksums": {"https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1110/SentiNews_sentence-level.txt": {"num_bytes": 27220223, "checksum": "4382e064543b7fc6d61cc76bc2f16f8f37c80065dbc4f87b888919d1f45bb9c1"}}, "download_size": 27220223, "post_processing_size": null, "dataset_size": 24641935, "size_in_bytes": 51862158}}
|
sentinews.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SentiNews: Manually sentiment annotated Slovenian news corpus."""
|
2 |
+
|
3 |
+
|
4 |
+
import csv
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
|
8 |
+
_CITATION = """\
|
9 |
+
@article{buvcar2018annotated,
|
10 |
+
title={Annotated news corpora and a lexicon for sentiment analysis in Slovene},
|
11 |
+
author={Bu{\v{c}}ar, Jo{\v{z}}e and {\v{Z}}nidar{\v{s}}i{\v{c}}, Martin and Povh, Janez},
|
12 |
+
journal={Language Resources and Evaluation},
|
13 |
+
volume={52},
|
14 |
+
number={3},
|
15 |
+
pages={895--919},
|
16 |
+
year={2018},
|
17 |
+
publisher={Springer}
|
18 |
+
}
|
19 |
+
"""
|
20 |
+
|
21 |
+
_DESCRIPTION = """\
|
22 |
+
SentiNews is a Slovenian sentiment classification dataset, consisting of news articles manually annotated with their
|
23 |
+
sentiment by between 2 and 6 annotators. The news articles contain political, business, economic and financial content
|
24 |
+
from the Slovenian news portals 24ur, Dnevnik, Finance, Rtvslo, and Žurnal24. The texts were annotated using the
|
25 |
+
five-level Lickert scale (1 – very negative, 2 – negative, 3 – neutral, 4 – positive, and 5 – very positive) on three
|
26 |
+
levels of granularity, i.e. on the document, paragraph, and sentence level. The final sentiment is determined using
|
27 |
+
the following criterion: negative (if average of scores ≤ 2.4); neutral (if average of scores is between 2.4 and 3.6);
|
28 |
+
positive (average of annotated scores ≥ 3.6).
|
29 |
+
"""
|
30 |
+
|
31 |
+
_HOMEPAGE = "https://github.com/19Joey85/Sentiment-annotated-news-corpus-and-sentiment-lexicon-in-Slovene/"
|
32 |
+
|
33 |
+
_LICENSE = "Creative Commons - Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)"
|
34 |
+
|
35 |
+
_URLS = {
|
36 |
+
"document_level": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1110/SentiNews_document-level.txt",
|
37 |
+
"paragraph_level": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1110/SentiNews_paragraph-level.txt",
|
38 |
+
"sentence_level": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1110/SentiNews_sentence-level.txt"
|
39 |
+
}
|
40 |
+
|
41 |
+
|
42 |
+
class Sentinews(datasets.GeneratorBasedBuilder):
|
43 |
+
"""SentiNews: Manually sentiment annotated Slovenian news corpus. Version 1.0."""
|
44 |
+
|
45 |
+
VERSION = datasets.Version("1.0.0")
|
46 |
+
|
47 |
+
BUILDER_CONFIGS = [
|
48 |
+
datasets.BuilderConfig(name="document_level", version=VERSION, description="Dataset annotated at document level."),
|
49 |
+
datasets.BuilderConfig(name="paragraph_level", version=VERSION, description="Dataset annotated at paragraph level."),
|
50 |
+
datasets.BuilderConfig(name="sentence_level", version=VERSION, description="Dataset annotated at sentence level."),
|
51 |
+
]
|
52 |
+
|
53 |
+
def _info(self):
|
54 |
+
_config_features = {
|
55 |
+
"nid": datasets.Value("uint16"),
|
56 |
+
"content": datasets.Value("string"),
|
57 |
+
"sentiment": datasets.Value("string")
|
58 |
+
}
|
59 |
+
|
60 |
+
if self.config.name == "paragraph_level":
|
61 |
+
_config_features["pid"] = datasets.Value("uint8")
|
62 |
+
elif self.config.name == "sentence_level":
|
63 |
+
_config_features["pid"] = datasets.Value("uint8")
|
64 |
+
_config_features["sid"] = datasets.Value("uint8")
|
65 |
+
|
66 |
+
features = datasets.Features(_config_features)
|
67 |
+
return datasets.DatasetInfo(
|
68 |
+
description=_DESCRIPTION,
|
69 |
+
features=features,
|
70 |
+
supervised_keys=("content", "sentiment"),
|
71 |
+
homepage=_HOMEPAGE,
|
72 |
+
license=_LICENSE,
|
73 |
+
citation=_CITATION,
|
74 |
+
)
|
75 |
+
|
76 |
+
def _split_generators(self, dl_manager):
|
77 |
+
urls = _URLS[self.config.name]
|
78 |
+
data_file = dl_manager.download_and_extract(urls)
|
79 |
+
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data_file": data_file})]
|
80 |
+
|
81 |
+
def _generate_examples(self, data_file):
|
82 |
+
_keys_to_return = ["nid", "content", "sentiment"]
|
83 |
+
|
84 |
+
if self.config.name == "paragraph_level":
|
85 |
+
_keys_to_return.append("pid")
|
86 |
+
elif self.config.name == "sentence_level":
|
87 |
+
_keys_to_return.append("pid")
|
88 |
+
_keys_to_return.append("sid")
|
89 |
+
|
90 |
+
with open(data_file, encoding="utf-8") as f:
|
91 |
+
data = csv.DictReader(f, delimiter="\t")
|
92 |
+
for idx, row in enumerate(data):
|
93 |
+
yield idx, {_k: row[_k] for _k in _keys_to_return}
|