"""Metaphor corpus KOMET 1.0""" import os import re import xml.etree.ElementTree as ET from typing import List, Tuple import datasets _CITATION = """\ @InProceedings{antloga2020komet, title = {Korpus metafor KOMET 1.0}, author={Antloga, \v{S}pela}, booktitle={Proceedings of the Conference on Language Technologies and Digital Humanities (Student abstracts)}, year={2020}, pages={167-170} } """ _DESCRIPTION = """\ KOMET 1.0 is a hand-annotated corpus for metaphorical expressions which contains about 200,000 words from Slovene journalistic, fiction and on-line texts. To annotate metaphors in the corpus an adapted and modified procedure of the MIPVU protocol (Steen et al., 2010: A method for linguistic metaphor identification: From MIP to MIPVU, https://www.benjamins.com/catalog/celcr.14) was used. The lexical units (words) whose contextual meanings are opposed to their basic meanings are considered metaphor-related words. The basic and contextual meaning for each word in the corpus was identified using the Dictionary of the standard Slovene Language. The corpus was annotated for the metaphoric following relations: indirect metaphor (MRWi), direct metaphor (MRWd), borderline case (WIDLI) and metaphor signal (MFlag). In addition, the corpus introduces a new 'frame' tag, which gives information about the concept to which it refers. """ _HOMEPAGE = "http://hdl.handle.net/11356/1293" _LICENSE = "Creative Commons - Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)" _URLS = { "komet": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1293/komet.tei.zip" } XML_NAMESPACE = "{http://www.w3.org/XML/1998/namespace}" EL_LEAF, EL_TYPE, EL_FRAME = range(3) def namespace(element): # https://stackoverflow.com/a/12946675 m = re.match(r'\{.*\}', element.tag) return m.group(0) if m else '' def word_info(sent_el): def _resolve_recursively(element) -> List: """ Knowingly ignored tags: name (anonymized, without IDs), gap, vocal, pause, del, linkGrp (syntactic dependencies) """ # Leaf node: word or punctuation character if element.tag.endswith(("w", "pc")): id_curr = element.attrib[f"{XML_NAMESPACE}id"] return [(id_curr, element.text)] # Annotated word or word group - not interested in the annotations in this function elif element.tag.endswith("seg"): parsed_data = [] for child in element: if child.tag.endswith("c"): # empty space betw. words continue res = _resolve_recursively(child) if isinstance(res, list): parsed_data.extend(res) else: parsed_data.append(res) return parsed_data id_words, words = [], [] for child_el in sent_el: curr_annotations = _resolve_recursively(child_el) if curr_annotations is not None: # None = unrecognized ("unimportant") element for ann in curr_annotations: id_words.append(ann[0]) words.append(ann[1]) return id_words, words def seg_info(sent_el): def _resolve_recursively(element) -> Tuple: """ Returns (type[, subtype], deeper_elements, latest_element)""" # Leaf node: word or punctuation character if element.tag.endswith(("w", "pc")): id_curr = element.attrib[f"{XML_NAMESPACE}id"] return EL_LEAF, [], [id_curr] # Annotated word or word group elif element.tag.endswith("seg"): if element.attrib["subtype"] == "frame": ann_type, subtype = EL_FRAME, element.attrib["ana"] if subtype.startswith("#met."): # for consistency with G-Komet, remove "#met." prefix from frames subtype = subtype[5:] elif element.attrib["type"] == "metaphor": ann_type = EL_TYPE subtype = element.attrib["subtype"] else: raise ValueError(f"Unrecognized seg type: {element.attrib['type']}") deeper_elements = [] latest_element = [] for child in element: if child.tag.endswith("c"): # empty space betw. words continue res = _resolve_recursively(child) if res[0] == EL_LEAF: latest_element.extend(res[2]) else: deeper_elements.extend(res[2]) deeper_elements.append((res[0], res[1], res[3])) latest_element.extend(res[3]) return ann_type, subtype, deeper_elements, latest_element annotations = [] for child_el in sent_el: if not child_el.tag.endswith("seg"): continue ann_type, subtype, deeper_elements, latest_element = _resolve_recursively(child_el) annotations.extend(deeper_elements) annotations.append((ann_type, subtype, latest_element)) return annotations class Komet(datasets.GeneratorBasedBuilder): """KOMET is a hand-annotated Slovenian corpus of metaphorical expressions.""" VERSION = datasets.Version("1.0.0") def _info(self): features = datasets.Features( { "document_name": datasets.Value("string"), "idx": datasets.Value("uint32"), # index inside current document "idx_paragraph": datasets.Value("uint32"), "idx_sentence": datasets.Value("uint32"), # index inside current paragraph "sentence_words": datasets.Sequence(datasets.Value("string")), "met_type": [{ "type": datasets.Value("string"), "word_indices": datasets.Sequence(datasets.Value("uint32")) }], "met_frame": [{ "type": datasets.Value("string"), "word_indices": datasets.Sequence(datasets.Value("uint32")) }] } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): data_dir = dl_manager.download_and_extract(_URLS["komet"]) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"data_dir": os.path.join(data_dir, "komet.tei")}, ) ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, data_dir): data_files = [] for fname in os.listdir(data_dir): curr_path = os.path.join(data_dir, fname) if os.path.isfile(curr_path) and fname.endswith(".xml") and fname != "komet.xml": # komet.xml = meta-file data_files.append(fname) data_files = sorted(data_files) idx_example = 0 for fname in data_files: fpath = os.path.join(data_dir, fname) curr_doc = ET.parse(fpath) root = curr_doc.getroot() NAMESPACE = namespace(root) idx_sent_glob = 0 for idx_par, curr_par in enumerate(root.iterfind(f".//{NAMESPACE}p")): id2position = {} # { -> {: foreach word} foreach sent} all_words = [] # Pass#1: extract word information for idx_sent, curr_sent in enumerate(curr_par.iterfind(f"{NAMESPACE}s")): id_words, words = word_info(curr_sent) id2position[idx_sent] = dict(zip(id_words, range(len(words)))) all_words.append(words) all_types, all_frames = [], [] # Pass#2: extract annotations from ments for idx_sent, curr_sent in enumerate(curr_par.iterfind(f"{NAMESPACE}s")): annotated_segs = seg_info(curr_sent) all_types.append([]) all_frames.append([]) for curr_ann in annotated_segs: ann_type, ann_subtype, words_involved = curr_ann if ann_type == EL_TYPE: all_types[idx_sent].append({ "type": ann_subtype, "word_indices": [id2position[idx_sent][_id_word] for _id_word in words_involved if _id_word in id2position[idx_sent]] }) elif ann_type == EL_FRAME: all_frames[idx_sent].append({ "type": ann_subtype, "word_indices": [id2position[idx_sent][_id_word] for _id_word in words_involved if _id_word in id2position[idx_sent]] }) idx_sent = 0 for curr_words, curr_types, curr_frames in zip(all_words, all_types, all_frames): if len(curr_words) == 0: continue yield idx_example, { "document_name": fname, "idx": idx_sent_glob, "idx_paragraph": idx_par, "idx_sentence": idx_sent, "sentence_words": curr_words, "met_type": curr_types, "met_frame": curr_frames } idx_example += 1 idx_sent += 1 idx_sent_glob += 1