Datasets:
Matej Klemen
Fix the frames mistakenly being shared incorrectly because of passing a mutable list
b877ca4
"""Metaphor corpus KOMET 1.0""" | |
import os | |
import re | |
import xml.etree.ElementTree as ET | |
from typing import List | |
import datasets | |
_CITATION = """\ | |
@InProceedings{antloga2020komet, | |
title = {Korpus metafor KOMET 1.0}, | |
author={Antloga, \v{S}pela}, | |
booktitle={Proceedings of the Conference on Language Technologies and Digital Humanities (Student abstracts)}, | |
year={2020}, | |
pages={167-170} | |
} | |
""" | |
_DESCRIPTION = """\ | |
KOMET 1.0 is a hand-annotated corpus for metaphorical expressions which contains about 200,000 words from | |
Slovene journalistic, fiction and on-line texts. | |
To annotate metaphors in the corpus an adapted and modified procedure of the MIPVU protocol | |
(Steen et al., 2010: A method for linguistic metaphor identification: From MIP to MIPVU, https://www.benjamins.com/catalog/celcr.14) | |
was used. The lexical units (words) whose contextual meanings are opposed to their basic meanings are considered | |
metaphor-related words. The basic and contextual meaning for each word in the corpus was identified using the | |
Dictionary of the standard Slovene Language. The corpus was annotated for the metaphoric following relations: | |
indirect metaphor (MRWi), direct metaphor (MRWd), borderline case (WIDLI) and metaphor signal (MFlag). | |
In addition, the corpus introduces a new 'frame' tag, which gives information about the concept to which it refers. | |
""" | |
_HOMEPAGE = "http://hdl.handle.net/11356/1293" | |
_LICENSE = "Creative Commons - Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)" | |
_URLS = { | |
"komet": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1293/komet.tei.zip" | |
} | |
def namespace(element): | |
# https://stackoverflow.com/a/12946675 | |
m = re.match(r'\{.*\}', element.tag) | |
return m.group(0) if m else '' | |
def resolve(element) -> List: | |
def _resolve_recursively(element, metaphor_type: str, frame_buffer: List): | |
# Leaf node: word or punctuation character | |
if element.tag.endswith(("w", "pc")): | |
if len(frame_buffer) == 0: | |
return element.text, metaphor_type, "O" | |
else: | |
# Frame annotations may be nested, encode them with a "/" separator; | |
# e.g., the first annotation is the frame of the phrase involving current word and the last annotation | |
# is the frame of a phrase part | |
return element.text, metaphor_type, "/".join(frame_buffer) | |
# Annotated word or word group | |
elif element.tag.endswith("seg"): | |
mtype, new_frame_buffer = "O", list(frame_buffer) | |
if element.attrib["subtype"] != "frame": | |
mtype = element.attrib["subtype"] | |
else: | |
# Frame annotations in KOMET are prepended with "#met.", while those in GKomet are not: unify | |
if element.attrib["ana"].startswith("#met."): | |
_mframe = element.attrib["ana"][5:] | |
else: | |
_mframe = element.attrib["ana"] | |
new_frame_buffer.append(_mframe) | |
parsed_data = [] | |
for child in element: | |
# spaces between words, skip | |
if child.tag.endswith("c"): | |
continue | |
res = _resolve_recursively(child, mtype, new_frame_buffer) | |
if isinstance(res, list): | |
parsed_data.extend(res) | |
else: | |
parsed_data.append(res) | |
return parsed_data | |
curr_annotations = _resolve_recursively(element, "O", []) | |
if not isinstance(curr_annotations, list): | |
curr_annotations = [curr_annotations] | |
return curr_annotations | |
class Komet(datasets.GeneratorBasedBuilder): | |
"""KOMET is a hand-annotated Slovenian corpus of metaphorical expressions.""" | |
VERSION = datasets.Version("1.0.0") | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"document_name": datasets.Value("string"), | |
"idx": datasets.Value("uint32"), # index inside current document | |
"idx_paragraph": datasets.Value("uint32"), | |
"idx_sentence": datasets.Value("uint32"), # index inside current paragraph | |
"sentence_words": datasets.Sequence(datasets.Value("string")), | |
"met_type": datasets.Sequence(datasets.Value("string")), | |
"met_frame": datasets.Sequence(datasets.Value("string")) | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
data_dir = dl_manager.download_and_extract(_URLS["komet"]) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"data_dir": os.path.join(data_dir, "komet.tei")}, | |
) | |
] | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, data_dir): | |
data_files = [] | |
for fname in os.listdir(data_dir): | |
curr_path = os.path.join(data_dir, fname) | |
if os.path.isfile(curr_path) and fname.endswith(".xml") and fname != "komet.xml": # komet.xml = meta-file | |
data_files.append(fname) | |
idx_example = 0 | |
for fname in data_files: | |
fpath = os.path.join(data_dir, fname) | |
curr_doc = ET.parse(fpath) | |
root = curr_doc.getroot() | |
NAMESPACE = namespace(root) | |
idx_sent_glob = 0 | |
for idx_par, curr_par in enumerate(root.iterfind(f"{NAMESPACE}p")): | |
for idx_sent, curr_sent in enumerate(curr_par.iterfind(f"{NAMESPACE}s")): | |
words, types, frames = [], [], [] | |
for curr_el in curr_sent: | |
if curr_el.tag.endswith(("w", "pc", "seg")): | |
curr_res = resolve(curr_el) | |
for _el in curr_res: | |
words.append(_el[0]) | |
types.append(_el[1]) | |
frames.append(_el[2]) | |
yield idx_example, { | |
"document_name": fname, | |
"idx": idx_sent_glob, | |
"idx_paragraph": idx_par, | |
"idx_sentence": idx_sent, | |
"sentence_words": words, | |
"met_type": types, | |
"met_frame": frames | |
} | |
idx_example += 1 | |
idx_sent_glob += 1 | |