Datasets:
File size: 9,866 Bytes
388286d 6338ec1 388286d 6338ec1 388286d 6338ec1 388286d 6338ec1 388286d 6338ec1 388286d 9ff0802 388286d 6338ec1 388286d 6338ec1 388286d 6338ec1 9ff0802 6338ec1 f4fae0a 6338ec1 f4fae0a 6338ec1 388286d 6338ec1 388286d 6338ec1 388286d 6338ec1 388286d 6338ec1 388286d 6338ec1 388286d 6338ec1 388286d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
"""Metaphor corpus KOMET 1.0"""
import os
import re
import xml.etree.ElementTree as ET
from typing import List, Tuple
import datasets
_CITATION = """\
@InProceedings{antloga2020komet,
title = {Korpus metafor KOMET 1.0},
author={Antloga, \v{S}pela},
booktitle={Proceedings of the Conference on Language Technologies and Digital Humanities (Student abstracts)},
year={2020},
pages={167-170}
}
"""
_DESCRIPTION = """\
KOMET 1.0 is a hand-annotated corpus for metaphorical expressions which contains about 200,000 words from
Slovene journalistic, fiction and on-line texts.
To annotate metaphors in the corpus an adapted and modified procedure of the MIPVU protocol
(Steen et al., 2010: A method for linguistic metaphor identification: From MIP to MIPVU, https://www.benjamins.com/catalog/celcr.14)
was used. The lexical units (words) whose contextual meanings are opposed to their basic meanings are considered
metaphor-related words. The basic and contextual meaning for each word in the corpus was identified using the
Dictionary of the standard Slovene Language. The corpus was annotated for the metaphoric following relations:
indirect metaphor (MRWi), direct metaphor (MRWd), borderline case (WIDLI) and metaphor signal (MFlag).
In addition, the corpus introduces a new 'frame' tag, which gives information about the concept to which it refers.
"""
_HOMEPAGE = "http://hdl.handle.net/11356/1293"
_LICENSE = "Creative Commons - Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)"
_URLS = {
"komet": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1293/komet.tei.zip"
}
XML_NAMESPACE = "{http://www.w3.org/XML/1998/namespace}"
EL_LEAF, EL_TYPE, EL_FRAME = range(3)
def namespace(element):
# https://stackoverflow.com/a/12946675
m = re.match(r'\{.*\}', element.tag)
return m.group(0) if m else ''
def word_info(sent_el):
def _resolve_recursively(element) -> List:
""" Knowingly ignored tags: name (anonymized, without IDs), gap, vocal, pause, del,
linkGrp (syntactic dependencies) """
# Leaf node: word or punctuation character
if element.tag.endswith(("w", "pc")):
id_curr = element.attrib[f"{XML_NAMESPACE}id"]
return [(id_curr, element.text)]
# Annotated word or word group - not interested in the annotations in this function
elif element.tag.endswith("seg"):
parsed_data = []
for child in element:
if child.tag.endswith("c") and not child.tag.endswith("pc"): # empty space betw. words
continue
res = _resolve_recursively(child)
if isinstance(res, list):
parsed_data.extend(res)
else:
parsed_data.append(res)
return parsed_data
id_words, words = [], []
for child_el in sent_el:
curr_annotations = _resolve_recursively(child_el)
if curr_annotations is not None: # None = unrecognized ("unimportant") element
for ann in curr_annotations:
id_words.append(ann[0])
words.append(ann[1])
return id_words, words
def seg_info(sent_el):
def _resolve_recursively(element) -> Tuple:
""" Returns (type[, subtype], deeper_elements, latest_element)"""
# Leaf node: word or punctuation character
if element.tag.endswith(("w", "pc")):
id_curr = element.attrib[f"{XML_NAMESPACE}id"]
return EL_LEAF, [], [id_curr]
# Annotated word or word group
elif element.tag.endswith("seg"):
if element.attrib["subtype"] == "frame":
ann_type, subtype = EL_FRAME, element.attrib["ana"]
if subtype.startswith("#met."): # for consistency with G-Komet, remove "#met." prefix from frames
subtype = subtype[5:]
elif element.attrib["type"] == "metaphor":
ann_type = EL_TYPE
subtype = element.attrib["subtype"]
else:
raise ValueError(f"Unrecognized seg type: {element.attrib['type']}")
deeper_elements = []
latest_element = []
for child in element:
if child.tag.endswith("c") and not child.tag.endswith("pc"): # empty space betw. words
continue
res = _resolve_recursively(child)
if res[0] == EL_LEAF:
latest_element.extend(res[2])
else:
deeper_elements.extend(res[2])
deeper_elements.append((res[0], res[1], res[3]))
latest_element.extend(res[3])
return ann_type, subtype, deeper_elements, latest_element
annotations = []
for child_el in sent_el:
if not child_el.tag.endswith("seg"):
continue
ann_type, subtype, deeper_elements, latest_element = _resolve_recursively(child_el)
annotations.extend(deeper_elements)
annotations.append((ann_type, subtype, latest_element))
return annotations
class Komet(datasets.GeneratorBasedBuilder):
"""KOMET is a hand-annotated Slovenian corpus of metaphorical expressions."""
VERSION = datasets.Version("1.0.0")
def _info(self):
features = datasets.Features(
{
"document_name": datasets.Value("string"),
"idx": datasets.Value("uint32"), # index inside current document
"idx_paragraph": datasets.Value("uint32"),
"idx_sentence": datasets.Value("uint32"), # index inside current paragraph
"sentence_words": datasets.Sequence(datasets.Value("string")),
"met_type": [{
"type": datasets.Value("string"),
"word_indices": datasets.Sequence(datasets.Value("uint32"))
}],
"met_frame": [{
"type": datasets.Value("string"),
"word_indices": datasets.Sequence(datasets.Value("uint32"))
}]
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URLS["komet"])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"data_dir": os.path.join(data_dir, "komet.tei")},
)
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, data_dir):
data_files = []
for fname in os.listdir(data_dir):
curr_path = os.path.join(data_dir, fname)
if os.path.isfile(curr_path) and fname.endswith(".xml") and fname != "komet.xml": # komet.xml = meta-file
data_files.append(fname)
data_files = sorted(data_files)
idx_example = 0
for fname in data_files:
fpath = os.path.join(data_dir, fname)
curr_doc = ET.parse(fpath)
root = curr_doc.getroot()
NAMESPACE = namespace(root)
idx_sent_glob = 0
for idx_par, curr_par in enumerate(root.iterfind(f".//{NAMESPACE}p")):
id2position = {} # {<idx_sent> -> {<id_word>: <position> foreach word} foreach sent}
all_words = []
# Pass#1: extract word information
for idx_sent, curr_sent in enumerate(curr_par.iterfind(f"{NAMESPACE}s")):
id_words, words = word_info(curr_sent)
id2position[idx_sent] = dict(zip(id_words, range(len(words))))
all_words.append(words)
all_types, all_frames = [], []
# Pass#2: extract annotations from <seg>ments
for idx_sent, curr_sent in enumerate(curr_par.iterfind(f"{NAMESPACE}s")):
annotated_segs = seg_info(curr_sent)
all_types.append([])
all_frames.append([])
for curr_ann in annotated_segs:
ann_type, ann_subtype, words_involved = curr_ann
if ann_type == EL_TYPE:
all_types[idx_sent].append({
"type": ann_subtype,
"word_indices": [id2position[idx_sent][_id_word] for _id_word in words_involved
if _id_word in id2position[idx_sent]]
})
elif ann_type == EL_FRAME:
all_frames[idx_sent].append({
"type": ann_subtype,
"word_indices": [id2position[idx_sent][_id_word] for _id_word in words_involved
if _id_word in id2position[idx_sent]]
})
idx_sent = 0
for curr_words, curr_types, curr_frames in zip(all_words, all_types, all_frames):
if len(curr_words) == 0:
continue
yield idx_example, {
"document_name": fname,
"idx": idx_sent_glob,
"idx_paragraph": idx_par,
"idx_sentence": idx_sent,
"sentence_words": curr_words,
"met_type": curr_types,
"met_frame": curr_frames
}
idx_example += 1
idx_sent += 1
idx_sent_glob += 1
|