File size: 6,686 Bytes
388286d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
"""Metaphor corpus KOMET 1.0"""

import os
import re
import xml.etree.ElementTree as ET
from typing import List

import datasets

_CITATION = """\
@InProceedings{antloga2020komet,
title = {Korpus metafor KOMET 1.0},
author={Antloga, \v{S}pela},
booktitle={Proceedings of the Conference on Language Technologies and Digital Humanities (Student abstracts)},
year={2020},
pages={167-170}
}
"""


_DESCRIPTION = """\
KOMET 1.0 is a hand-annotated corpus for metaphorical expressions which contains about 200,000 words from 
Slovene journalistic, fiction and on-line texts. 

To annotate metaphors in the corpus an adapted and modified procedure of the MIPVU protocol 
(Steen et al., 2010: A method for linguistic metaphor identification: From MIP to MIPVU, https://www.benjamins.com/catalog/celcr.14) 
was used. The lexical units (words) whose contextual meanings are opposed to their basic meanings are considered 
metaphor-related words. The basic and contextual meaning for each word in the corpus was identified using the 
Dictionary of the standard Slovene Language. The corpus was annotated for the metaphoric following relations: 
indirect metaphor (MRWi), direct metaphor (MRWd), borderline case (WIDLI) and metaphor signal (MFlag). 
In addition, the corpus introduces a new 'frame' tag, which gives information about the concept to which it refers.
"""

_HOMEPAGE = "http://hdl.handle.net/11356/1293"

_LICENSE = "Creative Commons - Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)"

_URLS = {
    "komet": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1293/komet.tei.zip"
}


def namespace(element):
    # https://stackoverflow.com/a/12946675
    m = re.match(r'\{.*\}', element.tag)
    return m.group(0) if m else ''


def resolve(element) -> List:
    def _resolve_recursively(element, metaphor_type: str, frame_buffer: List):
        # Leaf node: word or punctuation character
        if element.tag.endswith(("w", "pc")):
            if len(frame_buffer) == 0:
                return element.text, metaphor_type, "O"
            else:
                # Frame annotations may be nested, encode them with a "/" separator;
                # e.g., the first annotation is the frame of the phrase involving current word and the last annotation
                #  is the frame of a phrase part
                return element.text, metaphor_type, "/".join(frame_buffer)

        # Annotated word or word group
        elif element.tag.endswith("seg"):
            mtype, new_frame_buffer = "O", frame_buffer
            if element.attrib["subtype"] != "frame":
                mtype = element.attrib["subtype"]
            else:
                # Frame annotations in KOMET are prepended with "#met.", while those in GKomet are not: unify
                if element.attrib["ana"].startswith("#met."):
                    _mframe = element.attrib["ana"][5:]
                else:
                    _mframe = element.attrib["ana"]
                new_frame_buffer.append(_mframe)

            parsed_data = []
            for child in element:
                # spaces between words, skip
                if child.tag.endswith("c"):
                    continue

                res = _resolve_recursively(child, mtype, new_frame_buffer)
                if isinstance(res, list):
                    parsed_data.extend(res)
                else:
                    parsed_data.append(res)

            return parsed_data

    curr_annotations = _resolve_recursively(element, "O", [])
    if not isinstance(curr_annotations, list):
        curr_annotations = [curr_annotations]

    return curr_annotations


class Komet(datasets.GeneratorBasedBuilder):
    """KOMET is a hand-annotated Slovenian corpus of metaphorical expressions."""

    VERSION = datasets.Version("1.0.0")

    def _info(self):
        features = datasets.Features(
            {
                "document_name": datasets.Value("string"),
                "idx": datasets.Value("uint32"),  # index inside current document
                "idx_paragraph": datasets.Value("uint32"),
                "idx_sentence": datasets.Value("uint32"),  # index inside current paragraph
                "sentence_words": datasets.Sequence(datasets.Value("string")),
                "met_type": datasets.Sequence(datasets.Value("string")),
                "met_frame": datasets.Sequence(datasets.Value("string"))
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_URLS["komet"])
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"data_dir": os.path.join(data_dir, "komet.tei")},
            )
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, data_dir):
        data_files = []
        for fname in os.listdir(data_dir):
            curr_path = os.path.join(data_dir, fname)
            if os.path.isfile(curr_path) and fname.endswith(".xml") and fname != "komet.xml":  # komet.xml = meta-file
                data_files.append(fname)

        idx_example = 0
        for fname in data_files:
            fpath = os.path.join(data_dir, fname)

            curr_doc = ET.parse(fpath)
            root = curr_doc.getroot()
            NAMESPACE = namespace(root)

            idx_sent_glob = 0
            for idx_par, curr_par in enumerate(root.iterfind(f"{NAMESPACE}p")):
                for idx_sent, curr_sent in enumerate(curr_par.iterfind(f"{NAMESPACE}s")):
                    words, types, frames = [], [], []
                    for curr_el in curr_sent:
                        if curr_el.tag.endswith(("w", "pc", "seg")):
                            curr_res = resolve(curr_el)
                            for _el in curr_res:
                                words.append(_el[0])
                                types.append(_el[1])
                                frames.append(_el[2])

                    yield idx_example, {
                        "document_name": fname,
                        "idx": idx_sent_glob,
                        "idx_paragraph": idx_par,
                        "idx_sentence": idx_sent,
                        "sentence_words": words,
                        "met_type": types,
                        "met_frame": frames
                    }
                    idx_example += 1
                    idx_sent_glob += 1