Datasets:
cjvt
/

Languages:
Slovenian
License:
hanaskitek commited on
Commit
c0ebbe0
1 Parent(s): 75f7650

ginco version1

Browse files
Files changed (1) hide show
  1. ginco.py +164 -0
ginco.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import csv
16
+ import json
17
+ import os
18
+
19
+ import datasets
20
+
21
+ _CITATION = """\
22
+ @misc{11356/1467,
23
+ title = {Slovene Web genre identification corpus {GINCO} 1.0},
24
+ author = {Kuzman, Taja and Brglez, Mojca and Rupnik, Peter and Ljube{\v s}i{\'c}, Nikola},
25
+ url = {http://hdl.handle.net/11356/1467},
26
+ note = {Slovenian language resource repository {CLARIN}.{SI}},
27
+ copyright = {Creative Commons - Attribution-{ShareAlike} 4.0 International ({CC} {BY}-{SA} 4.0)},
28
+ issn = {2820-4042},
29
+ year = {2021} }
30
+ """
31
+
32
+ _DESCRIPTION = """\
33
+ The Slovene Web genre identification corpus GINCO 1.0 contains web texts, manually annotated with genre,
34
+ from two Slovene web corpora, the slWaC 2.0 corpus, crawled in 2014, and a web corpus, crawled in 2021 in the scope of the MaCoCu project.
35
+ The corpus allows for automated genre identification and genre analyses as well as other web corpora research, and comprises two parts:
36
+ - subcorpus of suitable texts, containing 1002 texts (478,969 words), manually annotated with 24 genre categories (News/Reporting, Announcement,
37
+ Research Article, Instruction, Recipe, Call (such as a Call for Papers), Legal/Regulation, Information/Explanation, Opinionated News, Review,
38
+ Opinion/Argumentation, Promotion of a Product, Promotion of Services, Invitation, Promotion, Interview, Forum, Correspondence, Script/Drama,
39
+ Prose, Lyrical, FAQ (Frequently Asked Questions), List of Summaries/Excerpts, and Other)
40
+ - subcorpus of unsuitable texts, containing 123 texts (173,778 words), discarded as not suitable for genre annotation due to reasons,
41
+ encoded by the labels (Machine Translation, Generated Text, Not Slovene, Encoding Issues, HTML Source Code, Boilerplate, Too Short/Incoherent,
42
+ Too Long (longer than 5,000 words), Non-Textual (no full sentences, e.g. tables, lists), and Multiple texts).
43
+ The texts in the suitable subset are annotated with up to three genre categories, where the primary label is the most prevalent,
44
+ and secondary and tertiary labels denote presence of additional genre(s). They are encoded in three levels of detail, allowing experiments
45
+ with the full set (24 labels), set of 21 labels (labels with less than 5 instances are merged with label Other) and set of 12 labels (similar labels
46
+ are merged). Additionally, the corpus contains some metadata about the text (e.g. url, domain, year) and its paragraphs (e.g. near-duplicates and their usefulness for the genre identification).
47
+ """
48
+
49
+ _HOMEPAGE = "http://hdl.handle.net/11356/1467"
50
+
51
+ _LICENSE = "Creative Commons - Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)"
52
+
53
+
54
+ _URLS = {
55
+ "ginco": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1467/GINCO-1.0-suitable.json.zip?sequence=5&isAllowed=y",
56
+ }
57
+
58
+
59
+ class Ginco(datasets.GeneratorBasedBuilder):
60
+ """Genre identification and genre analyses for Slovenian texts."""
61
+
62
+ VERSION = datasets.Version("1.1.0")
63
+
64
+ def _info(self):
65
+
66
+ features = datasets.Features(
67
+ {
68
+ "id": datasets.Value("string"),
69
+ "url": datasets.Value("string"),
70
+ "crawled": datasets.Value("string"),
71
+ "hard": datasets.Value("bool"),
72
+ "paragraphs": [
73
+ {
74
+ "text": datasets.Value("string"),
75
+ "duplicate": datasets.Value("bool"),
76
+ "keep": datasets.Value("bool"),
77
+ }
78
+ ],
79
+ "primary_level_1": datasets.Value("string"),
80
+ "primary_level_2": datasets.Value("string"),
81
+ "primary_level_3": datasets.Value("string"),
82
+ "secondary_level_1": datasets.Value("string"),
83
+ "secondary_level_2": datasets.Value("string"),
84
+ "secondary_level_3": datasets.Value("string"),
85
+ "tertiary_level_1": datasets.Value("string"),
86
+ "tertiary_level_2": datasets.Value("string"),
87
+ "tertiary_level_3": datasets.Value("string"),
88
+ "split": datasets.Value("string"),
89
+ "domain": datasets.Value("string"),
90
+ }
91
+ )
92
+
93
+ return datasets.DatasetInfo(
94
+ description=_DESCRIPTION,
95
+ features=features,
96
+ homepage=_HOMEPAGE,
97
+ license=_LICENSE,
98
+ citation=_CITATION,
99
+ )
100
+
101
+
102
+
103
+ def _split_generators(self, dl_manager):
104
+ urls = _URLS["ginco"]
105
+ download_path = dl_manager.download_and_extract(urls)
106
+ download_path = os.path.join(download_path, "GINCO-1.0-suitable.json", "GINCO-1.0-suitable.json")
107
+
108
+ return [
109
+ datasets.SplitGenerator(
110
+ name=datasets.Split.TRAIN,
111
+ gen_kwargs={
112
+ "filepath": download_path,
113
+ "split": "train",
114
+ },
115
+ ),
116
+
117
+ datasets.SplitGenerator(
118
+ name=datasets.Split.VALIDATION,
119
+ gen_kwargs={
120
+ "filepath": download_path,
121
+ "split": "dev",
122
+ },
123
+ ),
124
+
125
+ datasets.SplitGenerator(
126
+ name=datasets.Split.TEST,
127
+ gen_kwargs={
128
+ "filepath": download_path,
129
+ "split": "test",
130
+ },
131
+ ),
132
+ ]
133
+
134
+ def _generate_examples(self, filepath, split):
135
+
136
+ with open(filepath, "r", encoding='utf-8') as file_obj:
137
+ data = json.load(file_obj)
138
+
139
+ if split == "train":
140
+ examples = [example for example in data if example["split"] == "train"]
141
+ elif split == "dev":
142
+ examples = [example for example in data if example["split"] == "dev"]
143
+ elif split == "test":
144
+ examples = [example for example in data if example["split"] == "test"]
145
+
146
+ for i, example in enumerate(examples):
147
+ yield i, {
148
+ "id": example["id"],
149
+ "url": example["url"],
150
+ "crawled": example["crawled"],
151
+ "hard": example["hard"],
152
+ "paragraphs": example["paragraphs"],
153
+ "primary_level_1": example["primary_level_1"],
154
+ "primary_level_2": example["primary_level_2"],
155
+ "primary_level_3": example["primary_level_3"],
156
+ "secondary_level_1": example["secondary_level_1"],
157
+ "secondary_level_2": example["secondary_level_2"],
158
+ "secondary_level_3": example["secondary_level_3"],
159
+ "tertiary_level_1": example["tertiary_level_1"],
160
+ "tertiary_level_2": example["tertiary_level_2"],
161
+ "tertiary_level_3": example["tertiary_level_3"],
162
+ "split": example["split"],
163
+ "domain": example["domain"],
164
+ }