Datasets:
cjvt
/

Tasks:
Other
License:
hanaskitek commited on
Commit
4bd8d10
1 Parent(s): 0eff606
Files changed (2) hide show
  1. README.md +0 -0
  2. parlaMintSI.py +129 -0
README.md ADDED
File without changes
parlaMintSI.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import csv
17
+ import json
18
+ import os
19
+
20
+ import datasets
21
+
22
+ _CITATION = """\
23
+ @InProceedings{huggingface:dataset,
24
+ title = {A great new dataset},
25
+ author={huggingface, Inc.
26
+ },
27
+ year={2020}
28
+ }
29
+ """
30
+
31
+ _DESCRIPTION = """\
32
+ ParlaMint 3.0 is a multilingual set of 26 comparable corpora containing parliamentary debates mostly starting in 2015 and extending to mid-2022.
33
+
34
+ The corpora have extensive metadata, including aspects of the parliament; the speakers (name, gender, MP status, party affiliation, party coalition/opposition);
35
+ are structured into time-stamped terms, sessions and meetings; and with speeches being marked by the speaker and their role (e.g. chair, regular speaker).
36
+ The speeches also contain marked-up transcriber comments, such as gaps in the transcription, interruptions, applause, etc.
37
+ Note that some corpora have further information, e.g. the year of birth of the speakers, links to their Wikipedia articles, their membership in various committees, etc.
38
+ The corpora are also marked to the subcorpus they belong to ("reference", until 2020-01-30, "covid", from 2020-01-31, and "war", from 2022-02-24).
39
+
40
+ The corpora are encoded according to the Parla-CLARIN TEI recommendation (https://clarin-eric.github.io/parla-clarin/), but have been encoded against the compatible,
41
+ but much stricter ParlaMint encoding guidelines (https://clarin-eric.github.io/ParlaMint/) and schemas (included in this distribution.
42
+
43
+ This entry contains the ParlaMint TEI-encoded corpora with the derived plain text versions of the corpora along with TSV metadata of the speeches.
44
+ Also included is the 3.0 release of the data and scripts available at the GitHub repository of the ParlaMint project.
45
+
46
+ This dataset contains only Slovenian parliamentary debates.
47
+ """
48
+
49
+ _HOMEPAGE = "http://hdl.handle.net/11356/1486"
50
+
51
+ _LICENSE = "Creative Commons - Attribution 4.0 International (CC BY 4.0)"
52
+
53
+ _URLS = {
54
+ "parlamint": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1486/ParlaMint-SI.tgz?sequence=24&isAllowed=y",
55
+ }
56
+
57
+
58
+ class ParlaMintSI(datasets.GeneratorBasedBuilder):
59
+ """This dataset contains transcriptions of Slovenian parliamentary debates and relevant metadata."""
60
+
61
+ VERSION = datasets.Version("1.1.0")
62
+
63
+ def _info(self):
64
+ features = datasets.Features(
65
+ {
66
+ "ID": datasets.Value("string"),
67
+ "Title": datasets.Value("string"),
68
+ "Date": datasets.Value("string"),
69
+ "Body": datasets.Value("string"),
70
+ "Term": datasets.Value("string"),
71
+ "Session": datasets.Value("string"),
72
+ "Meeting": datasets.Value("int32"),
73
+ "Sitting": datasets.Value("string"),
74
+ "Agenda": datasets.Value("string"),
75
+ "Subcorpus": datasets.Value("string"),
76
+ "Speaker_role": datasets.Value("string"),
77
+ "Speaker_MP": datasets.Value("string"),
78
+ "Speaker_Minister": datasets.Value("string"),
79
+ "Speaker_party": datasets.Value("string"),
80
+ "Speaker_party_name": datasets.Value("string"),
81
+ "Party_status": datasets.Value("string"),
82
+ "Speaker_name": datasets.Value("string"),
83
+ "Speaker_gender": datasets.Value("string"),
84
+ "Speaker_birth": datasets.Value("string"),
85
+ "text": datasets.Value("string")
86
+ }
87
+ )
88
+
89
+ return datasets.DatasetInfo(
90
+ description=_DESCRIPTION,
91
+ features=features,
92
+ homepage=_HOMEPAGE,
93
+ license=_LICENSE,
94
+ citation=_CITATION,
95
+ )
96
+
97
+ def _split_generators(self, dl_manager):
98
+ urls = _URLS["parlamint"]
99
+ download_path = dl_manager.download_and_extract(urls)
100
+ return [
101
+ datasets.SplitGenerator(
102
+ name=datasets.Split.TRAIN,
103
+ gen_kwargs={
104
+ "filepath": download_path,
105
+ },
106
+ ),
107
+ ]
108
+
109
+ def _generate_examples(self, filepath):
110
+ filepath = os.path.join(filepath, "ParlaMint-SI.txt")
111
+
112
+ for year_dir in os.listdir(filepath):
113
+ year_path = os.path.join(filepath, year_dir)
114
+ if os.path.isdir(year_path):
115
+ tsv_files = [f for f in os.listdir(year_path) if f.endswith(".tsv")]
116
+ for tsv_file in tsv_files:
117
+ tsv_path = os.path.join(year_path, tsv_file)
118
+ txt_path = os.path.join(year_path, tsv_file.replace("-meta.tsv", ".txt"))
119
+
120
+ with open(tsv_path, "r", encoding="utf-8") as tsv, open(txt_path, "r", encoding="utf-8") as txt:
121
+ tsv_reader = csv.DictReader(tsv, delimiter="\t")
122
+ txt_content = txt.readlines()
123
+
124
+ for row in tsv_reader:
125
+ id_ = row.get("ID", "")
126
+ text = next((line.split("\t")[1] for line in txt_content if line.startswith(id_)), "")
127
+ example = {key: row.get(key, "") for key in row}
128
+ example["text"] = text
129
+ yield id_, example