chintagunta85
commited on
Commit
•
dc9ed5e
1
Parent(s):
acaba8f
Upload species_800.py
Browse files- species_800.py +150 -0
species_800.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""The SPECIES and ORGANISMS Resources for Fast and Accurate Identification of Taxonomic Names in Text"""
|
18 |
+
|
19 |
+
import os
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
|
23 |
+
|
24 |
+
logger = datasets.logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
_CITATION = """\
|
28 |
+
@article{pafilis2013species,
|
29 |
+
title={The SPECIES and ORGANISMS resources for fast and accurate identification of taxonomic names in text},
|
30 |
+
author={Pafilis, Evangelos and Frankild, Sune P and Fanini, Lucia and Faulwetter, Sarah and Pavloudi, Christina and Vasileiadou, Aikaterini and Arvanitidis, Christos and Jensen, Lars Juhl},
|
31 |
+
journal={PloS one},
|
32 |
+
volume={8},
|
33 |
+
number={6},
|
34 |
+
pages={e65390},
|
35 |
+
year={2013},
|
36 |
+
publisher={Public Library of Science}
|
37 |
+
}
|
38 |
+
"""
|
39 |
+
|
40 |
+
_DESCRIPTION = """\
|
41 |
+
We have developed an efficient algorithm and implementation of a dictionary-based approach to named entity recognition,
|
42 |
+
which we here use to identifynames of species and other taxa in text. The tool, SPECIES, is more than an order of
|
43 |
+
magnitude faster and as accurate as existing tools. The precision and recall was assessed both on an existing gold-standard
|
44 |
+
corpus and on a new corpus of 800 abstracts, which were manually annotated after the development of the tool. The corpus
|
45 |
+
comprises abstracts from journals selected to represent many taxonomic groups, which gives insights into which types of
|
46 |
+
organism names are hard to detect and which are easy. Finally, we have tagged organism names in the entire Medline database
|
47 |
+
and developed a web resource, ORGANISMS, that makes the results accessible to the broad community of biologists.
|
48 |
+
"""
|
49 |
+
|
50 |
+
_HOMEPAGE = "https://species.jensenlab.org/"
|
51 |
+
_URL = "https://drive.google.com/u/0/uc?id=1OletxmPYNkz2ltOr9pyT0b0iBtUWxslh&export=download/"
|
52 |
+
_BIOBERT_NER_DATASET_DIRECTORY = "s800"
|
53 |
+
_TRAINING_FILE = "train.tsv"
|
54 |
+
_DEV_FILE = "devel.tsv"
|
55 |
+
_TEST_FILE = "test.tsv"
|
56 |
+
|
57 |
+
|
58 |
+
class Species800Config(datasets.BuilderConfig):
|
59 |
+
"""BuilderConfig for Species800"""
|
60 |
+
|
61 |
+
def __init__(self, **kwargs):
|
62 |
+
"""BuilderConfig for Species800.
|
63 |
+
Args:
|
64 |
+
**kwargs: keyword arguments forwarded to super.
|
65 |
+
"""
|
66 |
+
super(Species800Config, self).__init__(**kwargs)
|
67 |
+
|
68 |
+
|
69 |
+
class Species800(datasets.GeneratorBasedBuilder):
|
70 |
+
"""Species800 dataset."""
|
71 |
+
|
72 |
+
BUILDER_CONFIGS = [
|
73 |
+
Species800Config(name="species_800", version=datasets.Version("1.0.0"), description="Species800 dataset"),
|
74 |
+
]
|
75 |
+
|
76 |
+
def _info(self):
|
77 |
+
custom_names = ['O','B-GENE','I-GENE','B-CHEMICAL','I-CHEMICAL','B-DISEASE','I-DISEASE',
|
78 |
+
'B-DNA', 'I-DNA', 'B-RNA', 'I-RNA', 'B-CELL_LINE', 'I-CELL_LINE', 'B-CELL_TYPE', 'I-CELL_TYPE',
|
79 |
+
'B-PROTEIN', 'I-PROTEIN', 'B-SPECIES', 'I-SPECIES']
|
80 |
+
return datasets.DatasetInfo(
|
81 |
+
description=_DESCRIPTION,
|
82 |
+
features=datasets.Features(
|
83 |
+
{
|
84 |
+
"id": datasets.Value("string"),
|
85 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
86 |
+
"ner_tags": datasets.Sequence(
|
87 |
+
datasets.features.ClassLabel(
|
88 |
+
names=custom_names
|
89 |
+
)
|
90 |
+
),
|
91 |
+
}
|
92 |
+
),
|
93 |
+
supervised_keys=None,
|
94 |
+
homepage=_HOMEPAGE,
|
95 |
+
citation=_CITATION,
|
96 |
+
)
|
97 |
+
|
98 |
+
def _split_generators(self, dl_manager):
|
99 |
+
"""Returns SplitGenerators."""
|
100 |
+
urls_to_download = {
|
101 |
+
"biobert_ner_datasets": _URL,
|
102 |
+
}
|
103 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
104 |
+
dataset_directory = os.path.join(downloaded_files["biobert_ner_datasets"], _BIOBERT_NER_DATASET_DIRECTORY)
|
105 |
+
|
106 |
+
return [
|
107 |
+
datasets.SplitGenerator(
|
108 |
+
name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(dataset_directory, _TRAINING_FILE)}
|
109 |
+
),
|
110 |
+
datasets.SplitGenerator(
|
111 |
+
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(dataset_directory, _DEV_FILE)}
|
112 |
+
),
|
113 |
+
datasets.SplitGenerator(
|
114 |
+
name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(dataset_directory, _TEST_FILE)}
|
115 |
+
),
|
116 |
+
]
|
117 |
+
|
118 |
+
def _generate_examples(self, filepath):
|
119 |
+
logger.info("⏳ Generating examples from = %s", filepath)
|
120 |
+
with open(filepath, encoding="utf-8") as f:
|
121 |
+
guid = 0
|
122 |
+
tokens = []
|
123 |
+
ner_tags = []
|
124 |
+
for line in f:
|
125 |
+
if line == "" or line == "\n":
|
126 |
+
if tokens:
|
127 |
+
yield guid, {
|
128 |
+
"id": str(guid),
|
129 |
+
"tokens": tokens,
|
130 |
+
"ner_tags": ner_tags,
|
131 |
+
}
|
132 |
+
guid += 1
|
133 |
+
tokens = []
|
134 |
+
ner_tags = []
|
135 |
+
else:
|
136 |
+
# tokens are tab separated
|
137 |
+
splits = line.split("\t")
|
138 |
+
tokens.append(splits[0])
|
139 |
+
if(splits[1].rstrip()=="B"):
|
140 |
+
ner_tags.append("B-SPECIES")
|
141 |
+
elif(splits[1].rstrip()=="I"):
|
142 |
+
ner_tags.append("I-SPECIES")
|
143 |
+
else:
|
144 |
+
ner_tags.append(splits[1].rstrip())
|
145 |
+
# last example
|
146 |
+
yield guid, {
|
147 |
+
"id": str(guid),
|
148 |
+
"tokens": tokens,
|
149 |
+
"ner_tags": ner_tags,
|
150 |
+
}
|