File size: 6,935 Bytes
d7fef5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbad997
d7fef5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import json
from pathlib import Path
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union

import datasets
from datasets.data_files import DataFilesDict
from datasets.download.download_manager import ArchiveIterable, DownloadManager
from datasets.features import Features
from datasets.info import DatasetInfo

# Typing
_TYPING_BOX = Tuple[float, float, float, float]

_DESCRIPTION = """\
This dataset contains all THIENVIET products images and annotations split in training
    and validation.
"""

_URLS = {
    "train": "https://huggingface.co./datasets/chanelcolgate/yenthienviet/resolve/main/data/coco/train.zip",
    "val": "https://huggingface.co./datasets/chanelcolgate/yenthienviet/resolve/main/data/coco/val.zip",
    "test": "https://huggingface.co./datasets/chanelcolgate/yenthienviet/resolve/main/data/coco/test.zip",
    "annotations": "https://huggingface.co./datasets/chanelcolgate/yenthienviet/resolve/main/data/coco/annotations.zip",
}

_SPLITS = ["train", "val", "test"]

_PATHS = {
    "annotations": {
        "train": Path("_annotations.coco.train.json"),
        "val": Path("_annotaions.coco.val.json"),
        "test": Path("_annotations.coco.test.json"),
    },
    "images": {
        "train": Path("train"),
        "val": Path("val"),
        "test": Path("test"),
    },
}

_CLASSES = [
    "hop_dln",
    "hop_jn",
    "hop_vtg",
    "hop_ytv",
    "lo_kids",
    "lo_ytv",
    "loc_ytv",
    "loc_kids",
    "loc_dln",
    "bot_dln",
    "loc_jn",
]


def round_box_values(box, decimals=2):
    return [round(val, decimals) for val in box]


class COCOHelper:
    """Helper class to load COCO annotations"""

    def __init__(self, annotation_path: Path, images_dir: Path) -> None:
        with open(annotation_path, "r") as file:
            data = json.load(file)
        self.data = data

        dict_id2annot: Dict[int, Any] = {}
        for annot in self.annotations:
            dict_id2annot.setdefault(annot["image_id"], []).append(annot)

        # Sort by id
        dict_id2annot = {
            k: list(sorted(v, key=lambda a: a["id"]))
            for k, v in dict_id2annot.items()
        }

        self.dict_path2annot: Dict[str, Any] = {}
        self.dict_path2id: Dict[str, Any] = {}
        for img in self.images:
            path_img = images_dir / str(img["file_name"])
            path_img_str = str(path_img)
            idx = int(img["id"])
            annot = dict_id2annot.get(idx, [])
            self.dict_path2annot[path_img_str] = annot
            self.dict_path2id[path_img_str] = img["id"]

    def __len__(self) -> int:
        return len(self.data["images"])

    @property
    def images(self) -> List[Dict[str, Union[str, int]]]:
        return self.data["images"]

    @property
    def annotations(self) -> List[Any]:
        return self.data["annotations"]

    @property
    def categories(self) -> List[Dict[str, Union[str, int]]]:
        return self.data["categories"]

    def get_annotations(self, image_path: str) -> List[Any]:
        return self.dict_path2annot.get(image_path, [])

    def get_image_id(self, image_path: str) -> int:
        return self.dict_path2id.get(image_path, -1)


class COCOThienviet(datasets.GeneratorBasedBuilder):
    """COCO Thienviet dataset."""

    VERSION = datasets.Version("1.0.1")

    def _info(self) -> datasets.DatasetInfo:
        """
        Return the dataset metadata and features.

        Returns:
            DatasetInfo: Metadata and features of the dataset.
        """
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image": datasets.Image(),
                    "image_id": datasets.Value("int64"),
                    "objects": datasets.Sequence(
                        {
                            "id": datasets.Value("int64"),
                            "area": datasets.Value("float64"),
                            "bbox": datasets.Sequence(
                                datasets.Value("float32"), length=4
                            ),
                            "label": datasets.ClassLabel(names=_CLASSES),
                            "iscrowd": datasets.Value("bool"),
                        }
                    ),
                }
            ),
        )

    def _split_generators(
        self, dl_manager: DownloadManager
    ) -> List[datasets.SplitGenerator]:
        """
        Provides the split information and downloads the data.

        Args:
            dl_manager (DownloadManager): The DownloadManager to use for downloading and
                extracting data.

        Returns:
            List[SplitGenerator]: List of SplitGenerator objects representing the data splits.
        """
        archive_annots = dl_manager.download_and_extract(_URLS["annotations"])

        splits = []
        for split in _SPLITS:
            archive_split = dl_manager.download(_URLS[split])
            annotation_path = (
                Path(archive_annots) / _PATHS["annotations"][split]
            )
            images = dl_manager.iter_archive(archive_split)
            splits.append(
                datasets.SplitGenerator(
                    name=datasets.Split(split),
                    gen_kwargs={
                        "annotation_path": annotation_path,
                        "images_dir": _PATHS["images"][split],
                        "images": images,
                    },
                )
            )
        return splits

    def _generate_examples(
        self, annotation_path: Path, images_dir: Path, images: ArchiveIterable
    ) -> Iterator:
        """
        Generates examples for the dataset.

        Args:
            annotation_path (Path): The path to the annotation file.
            images_dir (Path): The path to the directory containing the images.
            images: (ArchiveIterable): An iterable containing the images.

        Yields:
            Dict[str, Union[str, Image]]: A dictionary containing the generated examples.
        """
        coco_annotation = COCOHelper(annotation_path, images_dir)

        for image_path, f in images:
            annotations = coco_annotation.get_annotations(image_path)
            ret = {
                "image": {"path": image_path, "bytes": f.read()},
                "image_id": coco_annotation.get_image_id(image_path),
                "objects": [
                    {
                        "id": annot["id"],
                        "area": annot["area"],
                        "bbox": round_box_values(
                            annot["bbox"], 2
                        ),  # [x, y, w, h]
                        "label": annot["category_id"],
                        "iscrowd": bool(annot["iscrowd"]),
                    }
                    for annot in annotations
                ],
            }

            yield image_path, ret