chanelcolgate commited on
Commit
fc7f7bd
·
1 Parent(s): 6f5d8e9

Create image-classification-yenthienviet.py

Browse files
Files changed (1) hide show
  1. image-classification-yenthienviet.py +103 -0
image-classification-yenthienviet.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ """TODO: Add a description here."""
3
+ import csv
4
+ import json
5
+ import os
6
+
7
+ import datasets
8
+ from datasets.tasks import ImageClassification
9
+
10
+ _DESCRIPTION = """\
11
+ This dataset contains all THIENVIET products images split in training,
12
+ validation and testing
13
+ """
14
+
15
+ _URLS = {
16
+ "train": "https://huggingface.co/datasets/chanelcolgate/image-classification-yenthienviet/resolve/main/data/train.zip",
17
+ "val": "https://huggingface.co/datasets/chanelcolgate/image-classification-yenthienviet/resolve/main/data/val.zip",
18
+ "test": "https://huggingface.co/datasets/chanelcolgate/image-classification-yenthienviet/resolve/main/data/test.zip"
19
+ }
20
+
21
+ _CATEGORIES = ['botkhi','thuytinh','ocvit','ban','contrung','kimloai','toc']
22
+
23
+ class YenthienvietConfig(datasets.BuilderConfig):
24
+ """Builder Config for image-classification-yenthienviet"""
25
+ def __init__(self, name, data_urls, **kwargs):
26
+ """
27
+ BuilderConfig for image-classification-yenthienviet.
28
+
29
+ Args:
30
+ data_urls: `dict`, name to url to download the zip file from.
31
+ **kwargs: keyword arguments forwared to super.
32
+ """
33
+ super().__init__(version=datasets.Version("1.0.0", **kwargs))
34
+ self.name
35
+ self.data_urls = data_urls
36
+
37
+ # TODO: Name of the dataset usually matches the script name
38
+ class YenthienvietClassification(datasets.GeneratorBasedBuilder):
39
+ """ Builder for image-classification-yenthienviet"""
40
+ VERSION = datasets.Version("1.0.0")
41
+
42
+ BUILDER_CONFIG_CLASS = YenthienvietConfig
43
+ BUILDER_CONFIGS = [
44
+ YenthienvietConfig(
45
+ name="version-10/10",
46
+ description="Version 10/10 of image-classification-yenthienviet dataset.",
47
+ data_urls=_URLS,
48
+ )
49
+ ]
50
+
51
+ def _info(self):
52
+ features = datasets.Features(
53
+ {
54
+ "image_file_path": datasets.Value("string"),
55
+ "image": datasets.Image(),
56
+ "labels": datasets.features.ClassLabel(names=_CATEGORIES)
57
+ }
58
+ )
59
+ return datasets.DatasetInfo(
60
+ description=_DESCRIPTION,
61
+ features=features,
62
+ supervised_keys=("image", "label"),
63
+ task_templates=[ImageClassification(image_column="image", label_column="labels")]
64
+ )
65
+
66
+ def _split_generators(self, dl_manager):
67
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
68
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
69
+
70
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and exract URLS
71
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
72
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
73
+ data_files = dl_manager.download_and_extract(self.config.data_urls)
74
+ return [
75
+ datasets.SplitGenerator(
76
+ name=datasets.Split.TRAIN,
77
+ gen_kwargs={
78
+ "files": dl_manager.iter_files([data_files["train"]]),
79
+ },
80
+ ),
81
+ datasets.SplitGenerator(
82
+ name=datasets.Split.VALIDATION,
83
+ gen_kwargs={
84
+ "files": dl_manager.iter_files([data_files["val"]]),
85
+ },
86
+ ),
87
+ datasets.SplitGenerator(
88
+ name=datasets.Split.TEST,
89
+ gen_kwargs={
90
+ "files": dl_manager.iter_files([data_files["test"]]),
91
+ },
92
+ ),
93
+ ]
94
+
95
+ def _generate_examples(self, files):
96
+ for i, path in enumerate(files):
97
+ file_name = os.path.basename(path)
98
+ if file_name.endswith((".jpg", ".png", ".jpeg", ".bmp", ".tif", ".tiff")):
99
+ yield i, {
100
+ "image_file_path": path,
101
+ "image": path,
102
+ "labels": os.path.basename(os.path.dirname(path)),
103
+ }