chanelcolgate
commited on
Commit
·
fc7f7bd
1
Parent(s):
6f5d8e9
Create image-classification-yenthienviet.py
Browse files
image-classification-yenthienviet.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""TODO: Add a description here."""
|
3 |
+
import csv
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
|
7 |
+
import datasets
|
8 |
+
from datasets.tasks import ImageClassification
|
9 |
+
|
10 |
+
_DESCRIPTION = """\
|
11 |
+
This dataset contains all THIENVIET products images split in training,
|
12 |
+
validation and testing
|
13 |
+
"""
|
14 |
+
|
15 |
+
_URLS = {
|
16 |
+
"train": "https://huggingface.co/datasets/chanelcolgate/image-classification-yenthienviet/resolve/main/data/train.zip",
|
17 |
+
"val": "https://huggingface.co/datasets/chanelcolgate/image-classification-yenthienviet/resolve/main/data/val.zip",
|
18 |
+
"test": "https://huggingface.co/datasets/chanelcolgate/image-classification-yenthienviet/resolve/main/data/test.zip"
|
19 |
+
}
|
20 |
+
|
21 |
+
_CATEGORIES = ['botkhi','thuytinh','ocvit','ban','contrung','kimloai','toc']
|
22 |
+
|
23 |
+
class YenthienvietConfig(datasets.BuilderConfig):
|
24 |
+
"""Builder Config for image-classification-yenthienviet"""
|
25 |
+
def __init__(self, name, data_urls, **kwargs):
|
26 |
+
"""
|
27 |
+
BuilderConfig for image-classification-yenthienviet.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
data_urls: `dict`, name to url to download the zip file from.
|
31 |
+
**kwargs: keyword arguments forwared to super.
|
32 |
+
"""
|
33 |
+
super().__init__(version=datasets.Version("1.0.0", **kwargs))
|
34 |
+
self.name
|
35 |
+
self.data_urls = data_urls
|
36 |
+
|
37 |
+
# TODO: Name of the dataset usually matches the script name
|
38 |
+
class YenthienvietClassification(datasets.GeneratorBasedBuilder):
|
39 |
+
""" Builder for image-classification-yenthienviet"""
|
40 |
+
VERSION = datasets.Version("1.0.0")
|
41 |
+
|
42 |
+
BUILDER_CONFIG_CLASS = YenthienvietConfig
|
43 |
+
BUILDER_CONFIGS = [
|
44 |
+
YenthienvietConfig(
|
45 |
+
name="version-10/10",
|
46 |
+
description="Version 10/10 of image-classification-yenthienviet dataset.",
|
47 |
+
data_urls=_URLS,
|
48 |
+
)
|
49 |
+
]
|
50 |
+
|
51 |
+
def _info(self):
|
52 |
+
features = datasets.Features(
|
53 |
+
{
|
54 |
+
"image_file_path": datasets.Value("string"),
|
55 |
+
"image": datasets.Image(),
|
56 |
+
"labels": datasets.features.ClassLabel(names=_CATEGORIES)
|
57 |
+
}
|
58 |
+
)
|
59 |
+
return datasets.DatasetInfo(
|
60 |
+
description=_DESCRIPTION,
|
61 |
+
features=features,
|
62 |
+
supervised_keys=("image", "label"),
|
63 |
+
task_templates=[ImageClassification(image_column="image", label_column="labels")]
|
64 |
+
)
|
65 |
+
|
66 |
+
def _split_generators(self, dl_manager):
|
67 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
68 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
69 |
+
|
70 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and exract URLS
|
71 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
72 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
73 |
+
data_files = dl_manager.download_and_extract(self.config.data_urls)
|
74 |
+
return [
|
75 |
+
datasets.SplitGenerator(
|
76 |
+
name=datasets.Split.TRAIN,
|
77 |
+
gen_kwargs={
|
78 |
+
"files": dl_manager.iter_files([data_files["train"]]),
|
79 |
+
},
|
80 |
+
),
|
81 |
+
datasets.SplitGenerator(
|
82 |
+
name=datasets.Split.VALIDATION,
|
83 |
+
gen_kwargs={
|
84 |
+
"files": dl_manager.iter_files([data_files["val"]]),
|
85 |
+
},
|
86 |
+
),
|
87 |
+
datasets.SplitGenerator(
|
88 |
+
name=datasets.Split.TEST,
|
89 |
+
gen_kwargs={
|
90 |
+
"files": dl_manager.iter_files([data_files["test"]]),
|
91 |
+
},
|
92 |
+
),
|
93 |
+
]
|
94 |
+
|
95 |
+
def _generate_examples(self, files):
|
96 |
+
for i, path in enumerate(files):
|
97 |
+
file_name = os.path.basename(path)
|
98 |
+
if file_name.endswith((".jpg", ".png", ".jpeg", ".bmp", ".tif", ".tiff")):
|
99 |
+
yield i, {
|
100 |
+
"image_file_path": path,
|
101 |
+
"image": path,
|
102 |
+
"labels": os.path.basename(os.path.dirname(path)),
|
103 |
+
}
|