File size: 5,727 Bytes
4b9c64a
 
 
 
 
 
 
 
 
 
 
d4b7d25
4b9c64a
d4b7d25
4b9c64a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import random
import datasets
from datasets.tasks import ImageClassification

_NAMES = {
    "all": ["m_chest", "f_chest", "m_falsetto", "f_falsetto"],
    "gender": ["female", "male"],
    "singing_method": ["falsetto", "chest"],
}

_HOMEPAGE = f"https://www.modelscope.cn/datasets/ccmusic-database/{os.path.basename(__file__)[:-3]}"

_DOMAIN = f"{_HOMEPAGE}/resolve/master/data"

_URLS = {
    "audio": f"{_DOMAIN}/audio.zip",
    "mel": f"{_DOMAIN}/mel.zip",
    "eval": f"{_DOMAIN}/eval.zip",
}


class chest_falsetto(datasets.GeneratorBasedBuilder):
    def _info(self):
        return datasets.DatasetInfo(
            features=(
                datasets.Features(
                    {
                        "audio": datasets.Audio(sampling_rate=22050),
                        "mel": datasets.Image(),
                        "label": datasets.features.ClassLabel(names=_NAMES["all"]),
                        "gender": datasets.features.ClassLabel(names=_NAMES["gender"]),
                        "singing_method": datasets.features.ClassLabel(
                            names=_NAMES["singing_method"]
                        ),
                    }
                )
                if self.config.name == "default"
                else datasets.Features(
                    {
                        "mel": datasets.Image(),
                        "cqt": datasets.Image(),
                        "chroma": datasets.Image(),
                        "label": datasets.features.ClassLabel(names=_NAMES["all"]),
                        "gender": datasets.features.ClassLabel(names=_NAMES["gender"]),
                        "singing_method": datasets.features.ClassLabel(
                            names=_NAMES["singing_method"]
                        ),
                    }
                )
            ),
            supervised_keys=("mel", "label"),
            homepage=_HOMEPAGE,
            license="CC-BY-NC-ND",
            version="1.2.0",
            task_templates=[
                ImageClassification(
                    task="image-classification",
                    image_column="mel",
                    label_column="label",
                )
            ],
        )

    def _split_generators(self, dl_manager):
        dataset = []
        if self.config.name == "default":
            files = {}
            audio_files = dl_manager.download_and_extract(_URLS["audio"])
            mel_files = dl_manager.download_and_extract(_URLS["mel"])
            for fpath in dl_manager.iter_files([audio_files]):
                fname: str = os.path.basename(fpath)
                if fname.endswith(".wav"):
                    item_id = fname.split(".")[0]
                    files[item_id] = {"audio": fpath}

            for fpath in dl_manager.iter_files([mel_files]):
                fname = os.path.basename(fpath)
                if fname.endswith(".jpg"):
                    item_id = fname.split(".")[0]
                    files[item_id]["mel"] = fpath

            dataset = list(files.values())

        else:
            data_files = dl_manager.download_and_extract(_URLS["eval"])
            for fpath in dl_manager.iter_files([data_files]):
                if "mel" in fpath and os.path.basename(fpath).endswith(".jpg"):
                    dataset.append(fpath)

        categories = {}
        for name in _NAMES["all"]:
            categories[name] = []

        for data in dataset:
            fpath = data["audio"] if self.config.name == "default" else data
            filename: str = os.path.basename(fpath)[:-4]
            label = "_".join(filename.split("_")[1:3])
            categories[label].append(data)

        testset, validset, trainset = [], [], []
        for cls in categories:
            random.shuffle(categories[cls])
            count = len(categories[cls])
            p60 = int(count * 0.6)
            p80 = int(count * 0.8)
            trainset += categories[cls][:p60]
            validset += categories[cls][p60:p80]
            testset += categories[cls][p80:]

        random.shuffle(trainset)
        random.shuffle(validset)
        random.shuffle(testset)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"files": trainset}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION, gen_kwargs={"files": validset}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"files": testset}
            ),
        ]

    def _generate_examples(self, files):
        if self.config.name == "default":
            for i, fpath in enumerate(files):
                file_name = os.path.basename(fpath["audio"])
                sex = file_name.split("_")[1]
                method = file_name.split("_")[2].split(".")[0]
                yield i, {
                    "audio": fpath["audio"],
                    "mel": fpath["mel"],
                    "label": f"{sex}_{method}",
                    "gender": "male" if sex == "m" else "female",
                    "singing_method": method,
                }

        else:
            for i, fpath in enumerate(files):
                file_name: str = os.path.basename(fpath)
                sex = file_name.split("_")[1]
                method = file_name.split("_")[2]
                yield i, {
                    "mel": fpath,
                    "cqt": fpath.replace("mel", "cqt"),
                    "chroma": fpath.replace("mel", "chroma"),
                    "label": f"{sex}_{method}",
                    "gender": "male" if sex == "m" else "female",
                    "singing_method": method,
                }