File size: 5,727 Bytes
4b9c64a d4b7d25 4b9c64a d4b7d25 4b9c64a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import os
import random
import datasets
from datasets.tasks import ImageClassification
_NAMES = {
"all": ["m_chest", "f_chest", "m_falsetto", "f_falsetto"],
"gender": ["female", "male"],
"singing_method": ["falsetto", "chest"],
}
_HOMEPAGE = f"https://www.modelscope.cn/datasets/ccmusic-database/{os.path.basename(__file__)[:-3]}"
_DOMAIN = f"{_HOMEPAGE}/resolve/master/data"
_URLS = {
"audio": f"{_DOMAIN}/audio.zip",
"mel": f"{_DOMAIN}/mel.zip",
"eval": f"{_DOMAIN}/eval.zip",
}
class chest_falsetto(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
features=(
datasets.Features(
{
"audio": datasets.Audio(sampling_rate=22050),
"mel": datasets.Image(),
"label": datasets.features.ClassLabel(names=_NAMES["all"]),
"gender": datasets.features.ClassLabel(names=_NAMES["gender"]),
"singing_method": datasets.features.ClassLabel(
names=_NAMES["singing_method"]
),
}
)
if self.config.name == "default"
else datasets.Features(
{
"mel": datasets.Image(),
"cqt": datasets.Image(),
"chroma": datasets.Image(),
"label": datasets.features.ClassLabel(names=_NAMES["all"]),
"gender": datasets.features.ClassLabel(names=_NAMES["gender"]),
"singing_method": datasets.features.ClassLabel(
names=_NAMES["singing_method"]
),
}
)
),
supervised_keys=("mel", "label"),
homepage=_HOMEPAGE,
license="CC-BY-NC-ND",
version="1.2.0",
task_templates=[
ImageClassification(
task="image-classification",
image_column="mel",
label_column="label",
)
],
)
def _split_generators(self, dl_manager):
dataset = []
if self.config.name == "default":
files = {}
audio_files = dl_manager.download_and_extract(_URLS["audio"])
mel_files = dl_manager.download_and_extract(_URLS["mel"])
for fpath in dl_manager.iter_files([audio_files]):
fname: str = os.path.basename(fpath)
if fname.endswith(".wav"):
item_id = fname.split(".")[0]
files[item_id] = {"audio": fpath}
for fpath in dl_manager.iter_files([mel_files]):
fname = os.path.basename(fpath)
if fname.endswith(".jpg"):
item_id = fname.split(".")[0]
files[item_id]["mel"] = fpath
dataset = list(files.values())
else:
data_files = dl_manager.download_and_extract(_URLS["eval"])
for fpath in dl_manager.iter_files([data_files]):
if "mel" in fpath and os.path.basename(fpath).endswith(".jpg"):
dataset.append(fpath)
categories = {}
for name in _NAMES["all"]:
categories[name] = []
for data in dataset:
fpath = data["audio"] if self.config.name == "default" else data
filename: str = os.path.basename(fpath)[:-4]
label = "_".join(filename.split("_")[1:3])
categories[label].append(data)
testset, validset, trainset = [], [], []
for cls in categories:
random.shuffle(categories[cls])
count = len(categories[cls])
p60 = int(count * 0.6)
p80 = int(count * 0.8)
trainset += categories[cls][:p60]
validset += categories[cls][p60:p80]
testset += categories[cls][p80:]
random.shuffle(trainset)
random.shuffle(validset)
random.shuffle(testset)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"files": trainset}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"files": validset}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"files": testset}
),
]
def _generate_examples(self, files):
if self.config.name == "default":
for i, fpath in enumerate(files):
file_name = os.path.basename(fpath["audio"])
sex = file_name.split("_")[1]
method = file_name.split("_")[2].split(".")[0]
yield i, {
"audio": fpath["audio"],
"mel": fpath["mel"],
"label": f"{sex}_{method}",
"gender": "male" if sex == "m" else "female",
"singing_method": method,
}
else:
for i, fpath in enumerate(files):
file_name: str = os.path.basename(fpath)
sex = file_name.split("_")[1]
method = file_name.split("_")[2]
yield i, {
"mel": fpath,
"cqt": fpath.replace("mel", "cqt"),
"chroma": fpath.replace("mel", "chroma"),
"label": f"{sex}_{method}",
"gender": "male" if sex == "m" else "female",
"singing_method": method,
}
|