import os import random import hashlib import datasets import pandas as pd from datasets.tasks import AudioClassification _SYSTEM_TONIC = [ "C", "#C/bD", "D", "#D/bE", "E", "F", "#F/bG", "G", "#G/bA", "A", "#A/bB", "B", ] _PATTERN = [ "Gong", "Shang", "Jue", "Zhi", "Yu", ] _TYPE = [ "Pentatonic", "Hexatonic_Qingjue", "Hexatonic_Biangong", "Heptatonic_Yayue", "Heptatonic_Qingyue", "Heptatonic_Yanyue", ] _HOMEPAGE = f"https://www.modelscope.cn/datasets/ccmusic-database/{os.path.basename(__file__)[:-3]}" _DOMAIN = f"{_HOMEPAGE}/resolve/master/data" _URLS = { "audio": f"{_DOMAIN}/audio.zip", "mel": f"{_DOMAIN}/mel.zip", "label": f"{_DOMAIN}/label.csv", } class CNPM(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "audio": datasets.Audio(sampling_rate=44100), "mel": datasets.Image(), "title": datasets.Value("string"), "artist": datasets.Value("string"), "system": datasets.features.ClassLabel(names=_SYSTEM_TONIC), "tonic": datasets.features.ClassLabel(names=_SYSTEM_TONIC), "pattern": datasets.features.ClassLabel(names=_PATTERN), "type": datasets.features.ClassLabel(names=_TYPE), "mode_name": datasets.Value("string"), "length": datasets.Value("string"), } ), supervised_keys=("audio", "type"), homepage=_HOMEPAGE, license="CC-BY-NC-ND", version="1.2.0", task_templates=[ AudioClassification( task="audio-classification", audio_column="audio", label_column="type", ) ], ) def _str2md5(self, original_string: str): md5_obj = hashlib.md5() md5_obj.update(original_string.encode("utf-8")) return md5_obj.hexdigest() def _val_of_key(self, labels: pd.DataFrame, key: str, col: str): try: return labels.loc[key][col] except KeyError: return "" def _split_generators(self, dl_manager): audio_files = dl_manager.download_and_extract(_URLS["audio"]) mel_files = dl_manager.download_and_extract(_URLS["mel"]) label_file = dl_manager.download(_URLS["label"]) labels = pd.read_csv(label_file, index_col="文件名/File Name", encoding="gbk") files = {} for fpath in dl_manager.iter_files([audio_files]): fname: str = os.path.basename(fpath) if fname.endswith(".wav") or fname.endswith(".mp3"): song_id = self._str2md5(fname.split(".")[0]) files[song_id] = {"audio": fpath} for fpath in dl_manager.iter_files([mel_files]): fname = os.path.basename(fpath) if fname.endswith(".png"): song_id = self._str2md5(fname.split(".")[0]) files[song_id]["mel"] = fpath dataset = [] for path in files.values(): fname = os.path.basename(path["audio"]) dataset.append( { "audio": path["audio"], "mel": path["mel"], "title": self._val_of_key(labels, fname, "曲名/Title"), "artist": self._val_of_key(labels, fname, "演奏者/Artist"), "system": _SYSTEM_TONIC[ int(self._val_of_key(labels, fname, "同宫系统/System")) ], "tonic": _SYSTEM_TONIC[ int(self._val_of_key(labels, fname, "主音音名/Tonic")) ], "pattern": _PATTERN[ int(self._val_of_key(labels, fname, "样式/Pattern")) ], "type": _TYPE[int(self._val_of_key(labels, fname, "种类/Type"))], "mode_name": self._val_of_key(labels, fname, "调式全称/Mode Name"), "length": self._val_of_key(labels, fname, "时长/Length"), } ) random.shuffle(dataset) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"files": dataset}, ), ] def _generate_examples(self, files): for i, item in enumerate(files): yield i, item