CNPM / CNPM.py
admin
upd api
23c954e
raw
history blame
4.67 kB
import os
import random
import hashlib
import datasets
import pandas as pd
from datasets.tasks import AudioClassification
_SYSTEM_TONIC = [
"C",
"#C/bD",
"D",
"#D/bE",
"E",
"F",
"#F/bG",
"G",
"#G/bA",
"A",
"#A/bB",
"B",
]
_PATTERN = [
"Gong",
"Shang",
"Jue",
"Zhi",
"Yu",
]
_TYPE = [
"Pentatonic",
"Hexatonic_Qingjue",
"Hexatonic_Biangong",
"Heptatonic_Yayue",
"Heptatonic_Qingyue",
"Heptatonic_Yanyue",
]
_HOMEPAGE = f"https://www.modelscope.cn/datasets/ccmusic-database/{os.path.basename(__file__)[:-3]}"
_DOMAIN = f"{_HOMEPAGE}/resolve/master/data"
_URLS = {
"audio": f"{_DOMAIN}/audio.zip",
"mel": f"{_DOMAIN}/mel.zip",
"label": f"{_DOMAIN}/label.csv",
}
class CNPM(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
features=datasets.Features(
{
"audio": datasets.Audio(sampling_rate=44100),
"mel": datasets.Image(),
"title": datasets.Value("string"),
"artist": datasets.Value("string"),
"system": datasets.features.ClassLabel(names=_SYSTEM_TONIC),
"tonic": datasets.features.ClassLabel(names=_SYSTEM_TONIC),
"pattern": datasets.features.ClassLabel(names=_PATTERN),
"type": datasets.features.ClassLabel(names=_TYPE),
"mode_name": datasets.Value("string"),
"length": datasets.Value("string"),
}
),
supervised_keys=("audio", "type"),
homepage=_HOMEPAGE,
license="CC-BY-NC-ND",
version="1.2.0",
task_templates=[
AudioClassification(
task="audio-classification",
audio_column="audio",
label_column="type",
)
],
)
def _str2md5(self, original_string: str):
md5_obj = hashlib.md5()
md5_obj.update(original_string.encode("utf-8"))
return md5_obj.hexdigest()
def _val_of_key(self, labels: pd.DataFrame, key: str, col: str):
try:
return labels.loc[key][col]
except KeyError:
return ""
def _split_generators(self, dl_manager):
audio_files = dl_manager.download_and_extract(_URLS["audio"])
mel_files = dl_manager.download_and_extract(_URLS["mel"])
label_file = dl_manager.download(_URLS["label"])
labels = pd.read_csv(label_file, index_col="文件名/File Name", encoding="gbk")
files = {}
for fpath in dl_manager.iter_files([audio_files]):
fname: str = os.path.basename(fpath)
if fname.endswith(".wav") or fname.endswith(".mp3"):
song_id = self._str2md5(fname.split(".")[0])
files[song_id] = {"audio": fpath}
for fpath in dl_manager.iter_files([mel_files]):
fname = os.path.basename(fpath)
if fname.endswith(".png"):
song_id = self._str2md5(fname.split(".")[0])
files[song_id]["mel"] = fpath
dataset = []
for path in files.values():
fname = os.path.basename(path["audio"])
dataset.append(
{
"audio": path["audio"],
"mel": path["mel"],
"title": self._val_of_key(labels, fname, "曲名/Title"),
"artist": self._val_of_key(labels, fname, "演奏者/Artist"),
"system": _SYSTEM_TONIC[
int(self._val_of_key(labels, fname, "同宫系统/System"))
],
"tonic": _SYSTEM_TONIC[
int(self._val_of_key(labels, fname, "主音音名/Tonic"))
],
"pattern": _PATTERN[
int(self._val_of_key(labels, fname, "样式/Pattern"))
],
"type": _TYPE[int(self._val_of_key(labels, fname, "种类/Type"))],
"mode_name": self._val_of_key(labels, fname, "调式全称/Mode Name"),
"length": self._val_of_key(labels, fname, "时长/Length"),
}
)
random.shuffle(dataset)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"files": dataset},
),
]
def _generate_examples(self, files):
for i, item in enumerate(files):
yield i, item