File size: 3,992 Bytes
1da9e10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
"""
Loading script only for local Mr. Tydi. Used to generate the ir-format topic, qrels, folds locally. 
"""

import os
import json

import datasets
from dataclasses import dataclass

_CITATION = '''
@article{mrtydi,
      title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, 
      author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
      year={2021},
      journal={arXiv:2108.08787},
}
'''

languages = [
    'arabic',
    'bengali',
    'english',
    'indonesian',
    'finnish',
    'korean',
    'russian',
    'swahili',
    'telugu',
    'thai',
    'japanese',
    'combined',
]

dirname, abspath, os_join = os.path.dirname, os.path.abspath, os.path.join
current_working_dir = os.getcwd()
dataset_dir = current_working_dir

_DESCRIPTION = 'local dataset load script for Mr. TyDi'

_DATASET_LOCATIONS = {
    lang: {
        'train': os_join(dataset_dir, f'./mrtydi-v1.1-{lang}/train.jsonl.gz'),
        'dev': os_join(dataset_dir, f'./mrtydi-v1.1-{lang}/dev.jsonl.gz'),
        'test': os_join(dataset_dir, f'./mrtydi-v1.1-{lang}/test.jsonl.gz'),
    } for lang in languages
}
print(_DATASET_LOCATIONS)


class LocalMrTyDi(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [datasets.BuilderConfig(
            version=datasets.Version('1.1.0'),
            name=lang, description=f'Mr TyDi dataset in language {lang}.'
        ) for lang in languages
    ]

    def _info(self):
        features = datasets.Features({
            'query_id': datasets.Value('string'),
            'query': datasets.Value('string'),

            'positive_passages': [{
                'docid': datasets.Value('string'),
                'text': datasets.Value('string'), 'title': datasets.Value('string')
            }],
            'negative_passages': [{
                'docid': datasets.Value('string'),
                'text': datasets.Value('string'), 'title': datasets.Value('string'),
            }],
        })

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            supervised_keys=None,
            # Homepage of the dataset for documentation
            # homepage='https://github.com/castorini/mr.tydi',
            # License for the dataset if available
            license='',
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        lang = self.config.name
        downloaded_files = dl_manager.download_and_extract(_DATASET_LOCATIONS[lang])

        splits = [
            datasets.SplitGenerator(
                name='train',
                gen_kwargs={
                    'filepath': downloaded_files['train'],
                },
            ),
            datasets.SplitGenerator(
                name='dev',
                gen_kwargs={
                    'filepath': downloaded_files['dev'],
                },
            ),
            datasets.SplitGenerator(
                name='test',
                gen_kwargs={
                    'filepath': downloaded_files['test'],
                },
            ),
        ]

        # splits = [
        #     datasets.SplitGenerator(
        #         name='train',
        #         gen_kwargs={
        #             'filepath': downloaded_files['train'],
        #         },
        #     ),
        # ]
        return splits

    def _generate_examples(self, filepath):
        with open(filepath) as f:
            for i, line in enumerate(f):
                data = json.loads(line)
                for feature in ['negative_passages', 'positive_passages']:
                    if data.get(feature) is None:
                        data[feature] = []

                yield data['query_id'], data