Datasets:
File size: 6,917 Bytes
b3bdfeb 0f684b4 b3bdfeb 0f684b4 b0deae1 b3bdfeb a9cdcfb 8a7dc40 830827b b3bdfeb a9cdcfb b3bdfeb a9cdcfb b3bdfeb 698f21c b3bdfeb ab1da46 b3bdfeb ab1da46 b3bdfeb ab1da46 b3bdfeb 698f21c 830827b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- apache-2.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- open-domain-qa
- extractive-qa
paperswithcode_id: covidqa
pretty_name: CovidQaCastorini
dataset_info:
- config_name: covid_qa_deepset
features:
- name: document_id
dtype: int32
- name: context
dtype: string
- name: question
dtype: string
- name: is_impossible
dtype: bool
- name: id
dtype: int32
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: train
num_bytes: 65151262
num_examples: 2019
download_size: 4418117
dataset_size: 65151262
- config_name: covidqa
features:
- name: category_name
dtype: string
- name: question_query
dtype: string
- name: keyword_query
dtype: string
- name: answers
sequence:
- name: id
dtype: string
- name: title
dtype: string
- name: exact_answer
dtype: string
splits:
- name: train
num_bytes: 33757
num_examples: 27
download_size: 51438
dataset_size: 33757
- config_name: covid_qa_castorini
features:
- name: category_name
dtype: string
- name: question_query
dtype: string
- name: keyword_query
dtype: string
- name: answers
sequence:
- name: id
dtype: string
- name: title
dtype: string
- name: exact_answer
dtype: string
splits:
- name: train
num_bytes: 33757
num_examples: 27
download_size: 51438
dataset_size: 33757
---
# Dataset Card for [covid_qa_castorini]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** http://covidqa.ai
- **Repository:** https://github.com/castorini/pygaggle
- **Paper:** https://arxiv.org/abs/2004.11339
- **Point of Contact:** [Castorini research group @UWaterloo](https://github.com/castorini/)
### Dataset Summary
CovidQA is a question answering dataset specifically designed for COVID-19, built by hand from knowledge gathered
from Kaggle’s COVID-19 Open Research Dataset Challenge.
The dataset comprises 156 question-article pairs with 27 questions (topics) and 85 unique articles.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The text in the dataset is in English.
## Dataset Structure
### Data Instances
**What do the instances that comprise the dataset represent?**
Each represents a question, a context (document passage from the CORD19 dataset) and an answer.
**How many instances are there in total?**
**What data does each instance consist of?**
Each instance is a query (natural language question and keyword-based), a set of answers, and a document id with its title associated with each answer.
[More Information Needed]
### Data Fields
The data was annotated in SQuAD style fashion, where each row contains:
* **question_query**: Natural language question query
* **keyword_query**: Keyword-based query
* **category_name**: Category in which the queries are part of
* **answers**: List of answers
* **id**: The document ID the answer is found on
* **title**: Title of the document of the answer
* **exact_answer**: Text (string) of the exact answer
### Data Splits
**data/kaggle-lit-review-0.2.json**: 156 question-article pairs with 27 questions (topics) and 85 unique articles from
CORD-19.
[More Information Needed]
## Dataset Creation
The dataset aims to help for guiding research until more substantial evaluation resources become available. Being a smaller dataset,
it can be helpful for evaluating the zero-shot or transfer capabilities of existing models on topics specifically related to COVID-19.
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
[More Information Needed]
### Annotations
Five of the co-authors participated in this annotation effort, applying the aforementioned approach, with one lead
annotator responsible for approving topics and answering technical questions from the other annotators. Two annotators are
undergraduate students majoring in computer science, one is a science alumna, another is a computer science professor,
and the lead annotator is a graduate student in computer science—all affiliated with the University of Waterloo.
#### Annotation process
#### Who are the annotators?
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
The dataset was intended as a stopgap measure for guiding research until more substantial evaluation resources become available.
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
While this dataset, comprising 124 question–article pairs as of the present version 0.1 release, does not have sufficient
examples for supervised machine learning, it can be helpful for evaluating the zero-shot or transfer capabilities
of existing models on topics specifically related to COVID-19.
## Additional Information
The listed authors in the homepage are maintaining/supporting the dataset.
### Dataset Curators
[More Information Needed]
### Licensing Information
The dataset is licensed under the [Apache License 2.0](https://github.com/castorini/pygaggle/blob/master/LICENSE).
### Citation Information
```
@article{tang2020rapidly,
title={Rapidly Bootstrapping a Question Answering Dataset for COVID-19},
author={Tang, Raphael and Nogueira, Rodrigo and Zhang, Edwin and Gupta, Nikhil and Cam, Phuong and Cho, Kyunghyun and Lin, Jimmy},
journal={arXiv preprint arXiv:2004.11339},
year={2020}
}
```
### Contributions
Thanks to [@olinguyen](https://github.com/olinguyen) for adding this dataset. |