File size: 5,535 Bytes
3f5de1d
 
4fef89f
 
3f5de1d
 
 
 
 
 
 
 
2d574f4
 
 
 
 
 
 
 
 
 
 
 
3f5de1d
 
 
6ee996c
 
eeb99b3
6ee996c
 
3f5de1d
 
eeb99b3
6ee996c
 
 
 
eeb99b3
3f5de1d
 
 
 
eeb99b3
 
 
 
 
 
3f5de1d
4ba08cc
a966ae1
 
eeb99b3
 
 
 
 
 
a966ae1
 
 
 
eeb99b3
a966ae1
eeb99b3
3f5de1d
 
 
 
 
 
 
 
a966ae1
ce43a94
3f5de1d
 
 
 
 
 
 
 
 
 
 
 
 
 
a966ae1
6ee996c
3f5de1d
 
 
 
eeb99b3
 
 
3f5de1d
a966ae1
 
 
3f5de1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeb99b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import datasets

from typing import List

_DESCRIPTION = """\
Dataset for the shared baby language modeling task.
The goal is to train a language model from scratch on this data which represents
roughly the amount of text and speech data a young child observes.  
"""

_HOMEPAGE = "https://babylm.github.io"

filenames = [
    "aochildes.txt", 
    "bnc_spoken.txt",
    "cbt.txt",
    "children_stories.txt",
    "gutenberg.txt",
    "open_subtitles.txt",
    "qed.txt", 
    "simple_wikipedia.txt",
    "switchboard.txt",
    "wikipedia.txt"
]
class BabyLM(datasets.GeneratorBasedBuilder):
    
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="original_strict_small",
            description="Original dataset, 10M words, no POS tags",
            version="1.0.0",
        ),
        datasets.BuilderConfig(
            name="strict_small",
            description="Cleaned version of the dataset, 10M words, unsupervised POS tags",
            version="1.0.0",
        ),
        datasets.BuilderConfig(
            name="original_strict",
            description="Original dataset, 100M words, no POS tags",
            version="1.0.0",
        ),
        datasets.BuilderConfig(
            name="strict",
            description="Cleaned version of the dataset, 100M words, unsupervised POS tags",
            version="1.0.0",
        ),
        datasets.BuilderConfig(
            name="original_strict_small_gold",
            description="Original dataset, 10M words, gold POS tags",
            version="1.0.0",
        ),
        datasets.BuilderConfig(
            name="strict_small_gold",
            description="Cleaned version of the dataset, 10M words, gold POS tags",
            version="1.0.0",
        ),
        datasets.BuilderConfig(
            name="original_strict_gold",
            description="Original dataset, 100M words, gold POS tags",
            version="1.0.0",
        ),
        datasets.BuilderConfig(
            name="strict_gold",
            description="Cleaned version of the dataset, 100M words, gold POS tags",
            version="1.0.0",
        ),
    ]

    DEFAULT_CONFIG_NAME = "strict_small"

    def _info(self):
            features = datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "tagged_text": datasets.Value("string"),
                    "filename": datasets.Value("string"),
                }
            )
            return datasets.DatasetInfo(
                # This is the description that will appear on the datasets page.
                description=_DESCRIPTION,
                features=features,  # Here we define them above because they are different between the two configurations
                homepage=_HOMEPAGE,
            )


    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """ 
        Returns data for different splits 
        """

        if "strict_small" in self.config.name:
            train_data_dir = "10M"
        else: 
            train_data_dir = "100M"

        folder = 'original_tagged' if 'original' in self.config.name else 'clean_tagged'
        folder = folder + '_gold' if 'gold' in self.config.name else folder
        
        urls_to_download = {
            "train": [f"{folder}/{train_data_dir}/{fn}" for fn in filenames],
            "dev": [f"{folder}/dev/{fn}" for fn in filenames],
            "test": [f"{folder}/test/{fn}" for fn in filenames]
        } 

        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "split": "train",
                    "filepaths": downloaded_files["train"]}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "split": "dev",
                    "filepaths": downloaded_files["dev"]}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "split": "test",
                    "filepaths": downloaded_files["test"]
                }
            ),
        ]

     # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, split, filepaths):
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.

        # the filepaths should be a list of filepaths 
        if isinstance(filepaths, str):
            filepaths = [filepaths]
        
        global_idx = 0 

        for filepath in filepaths:
            with open(filepath, encoding="utf-8") as f:
                is_tags = False
                text = ""
                filename = ""
                # Every other row contains POS tags. First row is the filename (we can't use filepath since the file path changes upon caching)
                for row in f:
                    if filename == "":
                        filename = row.strip()
                        continue
                    if is_tags:
                        yield global_idx, {"text": text.strip(), "tagged_text": row.strip(), "filename": filename}
                        global_idx += 1 
                        is_tags = False
                    else:
                        text = row
                        is_tags = True