File size: 5,535 Bytes
3f5de1d 4fef89f 3f5de1d 2d574f4 3f5de1d 6ee996c eeb99b3 6ee996c 3f5de1d eeb99b3 6ee996c eeb99b3 3f5de1d eeb99b3 3f5de1d 4ba08cc a966ae1 eeb99b3 a966ae1 eeb99b3 a966ae1 eeb99b3 3f5de1d a966ae1 ce43a94 3f5de1d a966ae1 6ee996c 3f5de1d eeb99b3 3f5de1d a966ae1 3f5de1d eeb99b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import datasets
from typing import List
_DESCRIPTION = """\
Dataset for the shared baby language modeling task.
The goal is to train a language model from scratch on this data which represents
roughly the amount of text and speech data a young child observes.
"""
_HOMEPAGE = "https://babylm.github.io"
filenames = [
"aochildes.txt",
"bnc_spoken.txt",
"cbt.txt",
"children_stories.txt",
"gutenberg.txt",
"open_subtitles.txt",
"qed.txt",
"simple_wikipedia.txt",
"switchboard.txt",
"wikipedia.txt"
]
class BabyLM(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="original_strict_small",
description="Original dataset, 10M words, no POS tags",
version="1.0.0",
),
datasets.BuilderConfig(
name="strict_small",
description="Cleaned version of the dataset, 10M words, unsupervised POS tags",
version="1.0.0",
),
datasets.BuilderConfig(
name="original_strict",
description="Original dataset, 100M words, no POS tags",
version="1.0.0",
),
datasets.BuilderConfig(
name="strict",
description="Cleaned version of the dataset, 100M words, unsupervised POS tags",
version="1.0.0",
),
datasets.BuilderConfig(
name="original_strict_small_gold",
description="Original dataset, 10M words, gold POS tags",
version="1.0.0",
),
datasets.BuilderConfig(
name="strict_small_gold",
description="Cleaned version of the dataset, 10M words, gold POS tags",
version="1.0.0",
),
datasets.BuilderConfig(
name="original_strict_gold",
description="Original dataset, 100M words, gold POS tags",
version="1.0.0",
),
datasets.BuilderConfig(
name="strict_gold",
description="Cleaned version of the dataset, 100M words, gold POS tags",
version="1.0.0",
),
]
DEFAULT_CONFIG_NAME = "strict_small"
def _info(self):
features = datasets.Features(
{
"text": datasets.Value("string"),
"tagged_text": datasets.Value("string"),
"filename": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
features=features, # Here we define them above because they are different between the two configurations
homepage=_HOMEPAGE,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""
Returns data for different splits
"""
if "strict_small" in self.config.name:
train_data_dir = "10M"
else:
train_data_dir = "100M"
folder = 'original_tagged' if 'original' in self.config.name else 'clean_tagged'
folder = folder + '_gold' if 'gold' in self.config.name else folder
urls_to_download = {
"train": [f"{folder}/{train_data_dir}/{fn}" for fn in filenames],
"dev": [f"{folder}/dev/{fn}" for fn in filenames],
"test": [f"{folder}/test/{fn}" for fn in filenames]
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"split": "train",
"filepaths": downloaded_files["train"]}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"split": "dev",
"filepaths": downloaded_files["dev"]}
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"split": "test",
"filepaths": downloaded_files["test"]
}
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, split, filepaths):
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
# the filepaths should be a list of filepaths
if isinstance(filepaths, str):
filepaths = [filepaths]
global_idx = 0
for filepath in filepaths:
with open(filepath, encoding="utf-8") as f:
is_tags = False
text = ""
filename = ""
# Every other row contains POS tags. First row is the filename (we can't use filepath since the file path changes upon caching)
for row in f:
if filename == "":
filename = row.strip()
continue
if is_tags:
yield global_idx, {"text": text.strip(), "tagged_text": row.strip(), "filename": filename}
global_idx += 1
is_tags = False
else:
text = row
is_tags = True
|