Datasets:

File size: 9,555 Bytes
f6efb3f
a46ded0
 
 
 
85af697
a46ded0
85af697
c3f3a7e
 
85af697
c3f3a7e
85af697
a46ded0
 
 
 
 
 
 
 
 
 
 
 
fba1044
60c045c
953755b
122c335
03b6eff
 
 
 
 
 
 
 
 
 
 
 
 
122c335
 
 
03b6eff
 
 
 
 
 
 
3368b44
 
 
03b6eff
 
 
 
 
 
 
 
 
 
 
 
 
 
122c335
 
 
03b6eff
 
 
 
 
 
 
 
 
 
 
 
e6543a0
 
 
f6efb3f
 
 
 
 
 
 
60c045c
f6efb3f
 
 
 
60c045c
f6efb3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7549a13
f6efb3f
 
 
 
 
d8b0b42
 
 
f6efb3f
7549a13
f6efb3f
 
 
60c045c
f6efb3f
 
 
7549a13
f6efb3f
 
 
7549a13
f6efb3f
7549a13
f6efb3f
 
 
d8b0b42
 
 
f6efb3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8b0b42
 
 
f6efb3f
 
 
 
 
 
 
 
 
 
 
7549a13
f6efb3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60c045c
f6efb3f
 
 
 
 
 
 
 
 
 
 
 
 
7549a13
f6efb3f
7549a13
f6efb3f
 
 
7549a13
f6efb3f
60c045c
 
 
 
 
 
f6efb3f
 
7549a13
f6efb3f
60c045c
 
 
 
 
 
f6efb3f
 
7549a13
f6efb3f
 
 
7549a13
f6efb3f
7549a13
f6efb3f
 
 
7549a13
f6efb3f
 
 
7549a13
f6efb3f
 
 
7549a13
f6efb3f
7549a13
f6efb3f
 
 
7549a13
f6efb3f
 
 
7549a13
f6efb3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03b6eff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
---
annotations_creators:
- expert-generated
language_creators:
- machine-generated
language:
- tr
license:
- cc-by-3.0
- cc-by-4.0
- cc-by-sa-3.0
- mit
- other
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- extended|snli
- extended|multi_nli
task_categories:
- text-classification
task_ids:
- natural-language-inference
- semantic-similarity-scoring
- text-scoring
paperswithcode_id: nli-tr
pretty_name: Natural Language Inference in Turkish
license_details: Open Portion of the American National Corpus
dataset_info:
- config_name: snli_tr
  features:
  - name: idx
    dtype: int32
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: train
    num_bytes: 71175743
    num_examples: 550152
  - name: validation
    num_bytes: 1359639
    num_examples: 10000
  - name: test
    num_bytes: 1355409
    num_examples: 10000
  download_size: 40328942
  dataset_size: 73890791
- config_name: multinli_tr
  features:
  - name: idx
    dtype: int32
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: train
    num_bytes: 75524150
    num_examples: 392702
  - name: validation_matched
    num_bytes: 1908283
    num_examples: 10000
  - name: validation_mismatched
    num_bytes: 2039392
    num_examples: 10000
  download_size: 75518512
  dataset_size: 79471825
config_names:
- multinli_tr
- snli_tr
---

# Dataset Card for "nli_tr"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [https://github.com/boun-tabi/NLI-TR](https://github.com/boun-tabi/NLI-TR)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 115.85 MB
- **Size of the generated dataset:** 153.36 MB
- **Total amount of disk used:** 269.21 MB

### Dataset Summary

The Natural Language Inference in Turkish (NLI-TR) is a set of two large scale datasets that were obtained by translating the foundational NLI corpora (SNLI and MNLI) using Amazon Translate.

### Supported Tasks and Leaderboards

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Languages

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Dataset Structure

### Data Instances

#### multinli_tr

- **Size of downloaded dataset files:** 75.52 MB
- **Size of the generated dataset:** 79.47 MB
- **Total amount of disk used:** 154.99 MB

An example of 'validation_matched' looks as follows.
```
This example was too long and was cropped:

{
    "hypothesis": "Mrinal Sen'in çalışmalarının çoğu Avrupa koleksiyonlarında bulunabilir.",
    "idx": 7,
    "label": 1,
    "premise": "\"Kalküta, sanatsal yaratıcılığa dair herhangi bir iddiaya sahip olan tek diğer üretim merkezi gibi görünüyor, ama ironik bir şek..."
}
```

#### snli_tr

- **Size of downloaded dataset files:** 40.33 MB
- **Size of the generated dataset:** 73.89 MB
- **Total amount of disk used:** 114.22 MB

An example of 'train' looks as follows.
```
{
    "hypothesis": "Yaşlı bir adam, kızının işten çıkmasını bekçiyken suyunu içer.",
    "idx": 9,
    "label": 1,
    "premise": "Parlak renkli gömlek çalışanları arka planda gülümseme iken yaşlı bir adam bir kahve dükkanında küçük bir masada onun portakal suyu ile oturur."
}
```

### Data Fields

The data fields are the same among all splits.

#### multinli_tr
- `idx`: a `int32` feature.
- `premise`: a `string` feature.
- `hypothesis`: a `string` feature.
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).

#### snli_tr
- `idx`: a `int32` feature.
- `premise`: a `string` feature.
- `hypothesis`: a `string` feature.
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).

### Data Splits

#### multinli_tr

|           |train |validation_matched|validation_mismatched|
|-----------|-----:|-----------------:|--------------------:|
|multinli_tr|392702|             10000|                10000|

#### snli_tr

|       |train |validation|test |
|-------|-----:|---------:|----:|
|snli_tr|550152|     10000|10000|

## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Citation Information

```
@inproceedings{budur-etal-2020-data,
    title = "Data and Representation for Turkish Natural Language Inference",
    author = "Budur, Emrah and
      "{O}zçelik, Rıza and
      G"{u}ng"{o}r, Tunga",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    abstract = "Large annotated datasets in NLP are overwhelmingly in English. This is an obstacle to progress in other languages. Unfortunately, obtaining new annotated resources for each task in each language would be prohibitively expensive. At the same time, commercial machine translation systems are now robust. Can we leverage these systems to translate English-language datasets automatically? In this paper, we offer a positive response for natural language inference (NLI) in Turkish. We translated two large English NLI datasets into Turkish and had a team of experts validate their translation quality and fidelity to the original labels. Using these datasets, we address core issues of representation for Turkish NLI. We find that in-language embeddings are essential and that morphological parsing can be avoided where the training set is large. Finally, we show that models trained on our machine-translated datasets are successful on human-translated evaluation sets. We share all code, models, and data publicly.",
}

```


### Contributions

Thanks to [@e-budur](https://github.com/e-budur) for adding this dataset.