code
stringlengths
5
1M
repo_name
stringlengths
5
109
path
stringlengths
6
208
language
stringclasses
1 value
license
stringclasses
15 values
size
int64
5
1M
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.hive.execution import org.scalatest.BeforeAndAfter import org.apache.spark.sql.hive.test.TestHive /* Implicit conversions */ import scala.collection.JavaConversions._ /** * A set of test cases that validate partition and column pruning. */ class PruningSuite extends HiveComparisonTest with BeforeAndAfter { TestHive.cacheTables = false // Column/partition pruning is not implemented for `InMemoryColumnarTableScan` yet, need to reset // the environment to ensure all referenced tables in this suites are not cached in-memory. // Refer to https://issues.apache.org/jira/browse/SPARK-2283 for details. TestHive.reset() // Column pruning tests createPruningTest("Column pruning - with partitioned table", "SELECT key FROM srcpart WHERE ds = '2008-04-08' LIMIT 3", Seq("key"), Seq("key"), Seq( Seq("2008-04-08", "11"), Seq("2008-04-08", "12"))) createPruningTest("Column pruning - with non-partitioned table", "SELECT key FROM src WHERE key > 10 LIMIT 3", Seq("key"), Seq("key"), Seq.empty) createPruningTest("Column pruning - with multiple projects", "SELECT c1 FROM (SELECT key AS c1 FROM src WHERE key > 10) t1 LIMIT 3", Seq("c1"), Seq("key"), Seq.empty) createPruningTest("Column pruning - projects alias substituting", "SELECT c1 AS c2 FROM (SELECT key AS c1 FROM src WHERE key > 10) t1 LIMIT 3", Seq("c2"), Seq("key"), Seq.empty) createPruningTest("Column pruning - filter alias in-lining", "SELECT c1 FROM (SELECT key AS c1 FROM src WHERE key > 10) t1 WHERE c1 < 100 LIMIT 3", Seq("c1"), Seq("key"), Seq.empty) createPruningTest("Column pruning - without filters", "SELECT c1 FROM (SELECT key AS c1 FROM src) t1 LIMIT 3", Seq("c1"), Seq("key"), Seq.empty) createPruningTest("Column pruning - simple top project without aliases", "SELECT key FROM (SELECT key FROM src WHERE key > 10) t1 WHERE key < 100 LIMIT 3", Seq("key"), Seq("key"), Seq.empty) createPruningTest("Column pruning - non-trivial top project with aliases", "SELECT c1 * 2 AS double FROM (SELECT key AS c1 FROM src WHERE key > 10) t1 LIMIT 3", Seq("double"), Seq("key"), Seq.empty) // Partition pruning tests createPruningTest("Partition pruning - non-partitioned, non-trivial project", "SELECT key * 2 AS double FROM src WHERE value IS NOT NULL", Seq("double"), Seq("key", "value"), Seq.empty) createPruningTest("Partition pruning - non-partitioned table", "SELECT value FROM src WHERE key IS NOT NULL", Seq("value"), Seq("value", "key"), Seq.empty) createPruningTest("Partition pruning - with filter on string partition key", "SELECT value, hr FROM srcpart1 WHERE ds = '2008-04-08'", Seq("value", "hr"), Seq("value", "hr"), Seq( Seq("2008-04-08", "11"), Seq("2008-04-08", "12"))) createPruningTest("Partition pruning - with filter on int partition key", "SELECT value, hr FROM srcpart1 WHERE hr < 12", Seq("value", "hr"), Seq("value", "hr"), Seq( Seq("2008-04-08", "11"), Seq("2008-04-09", "11"))) createPruningTest("Partition pruning - left only 1 partition", "SELECT value, hr FROM srcpart1 WHERE ds = '2008-04-08' AND hr < 12", Seq("value", "hr"), Seq("value", "hr"), Seq( Seq("2008-04-08", "11"))) createPruningTest("Partition pruning - all partitions pruned", "SELECT value, hr FROM srcpart1 WHERE ds = '2014-01-27' AND hr = 11", Seq("value", "hr"), Seq("value", "hr"), Seq.empty) createPruningTest("Partition pruning - pruning with both column key and partition key", "SELECT value, hr FROM srcpart1 WHERE value IS NOT NULL AND hr < 12", Seq("value", "hr"), Seq("value", "hr"), Seq( Seq("2008-04-08", "11"), Seq("2008-04-09", "11"))) def createPruningTest( testCaseName: String, sql: String, expectedOutputColumns: Seq[String], expectedScannedColumns: Seq[String], expectedPartValues: Seq[Seq[String]]) = { test(s"$testCaseName - pruning test") { val plan = new TestHive.HiveQLQueryExecution(sql).executedPlan val actualOutputColumns = plan.output.map(_.name) val (actualScannedColumns, actualPartValues) = plan.collect { case p @ HiveTableScan(columns, relation, _) => val columnNames = columns.map(_.name) val partValues = p.prunePartitions(relation.hiveQlPartitions).map(_.getValues) (columnNames, partValues) }.head assert(actualOutputColumns === expectedOutputColumns, "Output columns mismatch") assert(actualScannedColumns === expectedScannedColumns, "Scanned columns mismatch") assert( actualPartValues.length === expectedPartValues.length, "Partition value count mismatches") for ((actual, expected) <- actualPartValues.zip(expectedPartValues)) { assert(actual sameElements expected, "Partition values mismatch") } } // Creates a query test to compare query results generated by Hive and Catalyst. createQueryTest(s"$testCaseName - query test", sql) } }
hengyicai/OnlineAggregationUCAS
sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/PruningSuite.scala
Scala
apache-2.0
6,002
/*§ =========================================================================== GraphsJ - SDK =========================================================================== Copyright (C) 2009-2016 Gianluca Costa =========================================================================== Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. =========================================================================== */ package info.gianlucacosta.graphsj /** * Text output console */ trait OutputConsole { /** * Prints the string representation of a value * * @param value */ def write(value: Any) /** * Prints the string representation of a value, followed by a newline character * * @param value */ def writeln(value: Any) /** * Prints a newline character */ def writeln() /** * Prints a header * * @param header The header text */ def writeHeader(header: String): Unit = { val headerLine = "-" * header.length writeln(headerLine) writeln(header) writeln(headerLine) } }
giancosta86/GraphsJ-sdk
src/main/scala/info/gianlucacosta/graphsj/OutputConsole.scala
Scala
apache-2.0
1,579
/* * WindowIndexWhere.scala * (FScape) * * Copyright (c) 2001-2022 Hanns Holger Rutz. All rights reserved. * * This software is published under the GNU Affero General Public License v3+ * * * For further information, please contact Hanns Holger Rutz at * [email protected] */ package de.sciss.fscape package graph import de.sciss.fscape.Graph.{ProductReader, RefMapIn} import de.sciss.fscape.UGenSource.unwrap import de.sciss.fscape.stream.{StreamIn, StreamOut} import scala.collection.immutable.{IndexedSeq => Vec} object WindowIndexWhere extends ProductReader[WindowIndexWhere] { override def read(in: RefMapIn, key: String, arity: Int): WindowIndexWhere = { require (arity == 2) val _p = in.readGE() val _size = in.readGE() new WindowIndexWhere(_p, _size) } } /** A UGen that determines for each input window the first index where a predicate holds. * It outputs one integer value per window; if the predicate does not hold across the entire * window or if the window size is zero, the index will be `-1`. * * @param p a predicate to detect the index * @param size the window size. */ final case class WindowIndexWhere(p: GE, size: GE) extends UGenSource.SingleOut { protected def makeUGens(implicit b: UGenGraph.Builder): UGenInLike = unwrap(this, Vector(p.expand, size.expand)) protected def makeUGen(args: Vec[UGenIn])(implicit b: UGenGraph.Builder): UGenInLike = UGen.SingleOut(this, args) private[fscape] def makeStream(args: Vec[StreamIn])(implicit b: stream.Builder): StreamOut = { val Vec(p, size) = args: @unchecked stream.WindowIndexWhere(p = p.toInt, size = size.toInt) } }
Sciss/FScape-next
core/shared/src/main/scala/de/sciss/fscape/graph/WindowIndexWhere.scala
Scala
agpl-3.0
1,676
/* * @author Philip Stutz * @author Mihaela Verman * * Copyright 2013 University of Zurich * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ package com.signalcollect.triplerush.vertices.query import scala.concurrent.Promise import com.signalcollect.GraphEditor import com.signalcollect.triplerush.OperationIds import com.signalcollect.triplerush.TriplePattern /** * If execution is complete returns Some(numberOfResults), else returns None. */ final class ResultCountingQueryVertex( query: Seq[TriplePattern], tickets: Long, resultPromise: Promise[Option[Long]]) extends AbstractQueryVertex[Long](query, tickets, numberOfSelectVariables = 0) { val id = OperationIds.embedInLong(OperationIds.nextCountQueryId) override def afterInitialization(graphEditor: GraphEditor[Long, Any]): Unit = { state = 0 super.afterInitialization(graphEditor) } def handleBindings(bindings: Array[Array[Int]]): Unit = { throw new UnsupportedOperationException("Result counting vertex should never receive bindings.") } def handleResultCount(resultCount: Long): Unit = { state += resultCount } override def reportResults(complete: Boolean): Unit = { if (complete) { resultPromise.success(Some(state)) } else { resultPromise.success(None) } } }
hicolour/triplerush
src/main/scala/com/signalcollect/triplerush/vertices/query/ResultCountingQueryVertex.scala
Scala
apache-2.0
1,835
package finatra.quickstart import com.google.inject.testing.fieldbinder.Bind import com.twitter.finagle.http.Status._ import com.twitter.finatra.http.EmbeddedHttpServer import com.twitter.inject.Mockito import com.twitter.inject.server.FeatureTest import com.twitter.util.Future import finatra.quickstart.domain.TweetId import finatra.quickstart.domain.http.{TweetLocation, TweetResponse} import finatra.quickstart.firebase.FirebaseClient import finatra.quickstart.services.IdService class TwitterCloneFeatureTest extends FeatureTest with Mockito { override val server = new EmbeddedHttpServer(new TwitterCloneServer) @Bind val firebaseClient = smartMock[FirebaseClient] @Bind val idService = smartMock[IdService] /* Mock GET Request performed in TwitterCloneWarmup */ firebaseClient.get("/tweets/123.json")(manifest[TweetResponse]) returns Future(None) "tweet creation" in { idService.getId returns Future(TweetId("123")) val savedStatus = TweetResponse( id = TweetId("123"), message = "Hello #FinagleCon", location = Some(TweetLocation(37.7821120598956, -122.400612831116)), nsfw = false) firebaseClient.put("/tweets/123.json", savedStatus) returns Future.Unit firebaseClient.get("/tweets/123.json")(manifest[TweetResponse]) returns Future(Option(savedStatus)) firebaseClient.get("/tweets/124.json")(manifest[TweetResponse]) returns Future(None) firebaseClient.get("/tweets/125.json")(manifest[TweetResponse]) returns Future(None) val result = server.httpPost( path = "/tweet", postBody = """ { "message": "Hello #FinagleCon", "location": { "lat": "37.7821120598956", "long": "-122.400612831116" }, "nsfw": false }""", andExpect = Created, withJsonBody = """ { "id": "123", "message": "Hello #FinagleCon", "location": { "lat": "37.7821120598956", "long": "-122.400612831116" }, "nsfw": false }""") server.httpGetJson[TweetResponse]( path = result.location.get, andExpect = Ok, withJsonBody = result.contentString) } "Post bad tweet" in { server.httpPost( path = "/tweet", postBody = """ { "message": "", "location": { "lat": "9999" }, "nsfw": "abc" }""", andExpect = BadRequest, withJsonBody = """ { "errors" : [ "location.lat: [9999.0] is not between -85 and 85", "location.long: field is required", "message: size [0] is not between 1 and 140", "nsfw: 'abc' is not a valid Boolean" ] } """) } }
syamantm/finatra
examples/twitter-clone/src/test/scala/finatra/quickstart/TwitterCloneFeatureTest.scala
Scala
apache-2.0
2,785
package controllers import java.net.URLEncoder import controllers.AdministrationDashboardController._ import utils.Global._ import utils.Implicits._ import play.api.mvc.{ Action, Controller } import utils.Security.Authentication import utils.semantic.{ Resource, RDFNode, SPARQLTools } import utils.semantic.Vocabulary.{ lwm, rdfs, foaf } import scala.concurrent.ExecutionContext.Implicits.global import scala.concurrent.Future import scala.util.control.NonFatal object SearchController extends Controller with Authentication { def search(param: String) = hasPermissions(Permissions.AdminRole.permissions.toList: _*) { session ⇒ Action.async { implicit request ⇒ val regex = s"${URLEncoder.encode(param, "UTF-8")}".toCharArray.toList.map(e ⇒ s"[$e]").mkString("") val futureFirstName = { val q = s""" Select ?s (${rdfs.label} as ?p) ?o where { ?s ${foaf.firstName} ?name . ?s ${rdfs.label} ?o filter regex(?name, "$regex", "i") } order by asc(?o) """.stripMargin sparqlExecutionContext.executeQuery(q).map { result ⇒ SPARQLTools.statementsFromString(result).map(e ⇒ (e.s, e.o)) } } val futureLastName = { val q = s""" Select ?s (${rdfs.label} as ?p) ?o where { ?s ${foaf.lastName} ?name . ?s ${rdfs.label} ?o filter regex(?name, "$regex", "i") } order by asc(?o) """.stripMargin sparqlExecutionContext.executeQuery(q).map { result ⇒ SPARQLTools.statementsFromString(result).map(e ⇒ (e.s, e.o)) } } val futureLabel = { val q = s""" Select ?s (${rdfs.label} as ?p) ?o where { ?s ${rdfs.label} ?o filter regex(?o, "$regex", "i") } order by asc(?o) """.stripMargin sparqlExecutionContext.executeQuery(q).map { result ⇒ SPARQLTools.statementsFromString(result).map(e ⇒ (e.s, e.o)) } } val futureRegistrationId = { val q = s""" Select ?s (${rdfs.label} as ?p) ?o where { ?s ${lwm.hasRegistrationId} ?id . ?s ${rdfs.label} ?o filter regex(?id, "$regex", "i") } order by asc(?o) """.stripMargin sparqlExecutionContext.executeQuery(q).map { result ⇒ SPARQLTools.statementsFromString(result).map(e ⇒ (e.s, e.o)) } } val futureGmId = { val q = s""" Select ?s (${lwm.hasGmId} as ?p) ?o { ?s ${lwm.hasGmId} ?param . ?s ${rdfs.label} ?o filter regex(?param, '^$param','i') } order by asc(?o) """.stripMargin sparqlExecutionContext.executeQuery(q).map { result ⇒ SPARQLTools.statementsFromString(result).map(e ⇒ (e.s, e.o)) } } (for { firstName ← futureFirstName lastName ← futureLastName registrationId ← futureRegistrationId gmId ← futureGmId } yield { val complete = firstName ++ lastName ++ registrationId ++ gmId Ok(views.html.complex_search(complete)) }).recover { case NonFatal(e) ⇒ InternalServerError(s"Oops. There seems to be a problem ($e) with the server. We are working on it!") } } } }
FHK-ADV/lwm
app/controllers/SearchController.scala
Scala
mit
3,527
package no.uio.musit.models import play.api.libs.json.{JsNumber, Reads, Writes, _} case class DatabaseId(underlying: Long) extends AnyVal object DatabaseId { implicit val reads: Reads[DatabaseId] = __.read[Long].map(DatabaseId.apply) implicit val writes: Writes[DatabaseId] = Writes(did => JsNumber(did.underlying)) implicit def fromLong(l: Long): DatabaseId = DatabaseId(l) implicit def toLong(id: DatabaseId): Long = id.underlying implicit def fromOptLong(ml: Option[Long]): Option[DatabaseId] = ml.map(fromLong) implicit def toOptLong(mdid: Option[DatabaseId]): Option[Long] = mdid.map(toLong) }
MUSIT-Norway/musit
musit-models/src/main/scala/no/uio/musit/models/DatabaseId.scala
Scala
gpl-2.0
621
package com.harrys.hyppo.worker.exec /** * Created by jpetty on 12/7/15. */ sealed trait TaskLogStrategy { def configName: String } object TaskLogStrategy { case object PipeTaskLogStrategy extends TaskLogStrategy { override def configName: String = "PIPE" } case object FileTaskLogStrategy extends TaskLogStrategy { override def configName: String = "FILE" } case object NullTaskLogStrategy extends TaskLogStrategy { override def configName: String = "NULL" } final val strategies: Seq[TaskLogStrategy] = Seq(PipeTaskLogStrategy, FileTaskLogStrategy, NullTaskLogStrategy) def strategyForName(value: String): TaskLogStrategy = { strategies.find(_.configName.equalsIgnoreCase(value)).getOrElse(throw new IllegalArgumentException(s"Unknown TaskLogStrategy: $value. Must be one of: ${ strategies.map(_.configName).mkString(", ") }")) } }
harrystech/hyppo-worker
worker/src/main/scala/com/harrys/hyppo/worker/exec/TaskLogStrategy.scala
Scala
mit
881
package com.codacy.client.stash.client import java.net.URL import com.codacy.client.stash.client.auth.Authenticator import com.codacy.client.stash.util.HTTPStatusCodes import play.api.libs.json._ import scalaj.http.{Http, HttpOptions, HttpRequest, HttpResponse, StringBodyConnectFunc} import scala.util.Properties import scala.util.control.NonFatal class StashClient(apiUrl: String, authenticator: Option[Authenticator] = None, acceptAllCertificates: Boolean = false) { /* * Does an API request and parses the json output into a class */ def execute[T]( request: Request[T] )(params: Map[String, String] = Map.empty)(implicit reader: Reads[T]): RequestResponse[T] = { get[T](request.path, params) match { case Right(json) => RequestResponse(json.asOpt[T]) case Left(error) => error } } /* * Does an paginated API request and parses the json output into a sequence of classes */ def executePaginated[T]( request: Request[Seq[T]] )(params: Map[String, String] = Map.empty)(implicit reader: Reads[T]): RequestResponse[Seq[T]] = { val cleanUrl = request.path.takeWhile(_ != '?') get[Seq[T]](cleanUrl, params) match { case Right(json) => val nextRepos = (for { isLastPage <- (json \ "isLastPage").asOpt[Boolean] if !isLastPage nextPageStart <- (json \ "nextPageStart").asOpt[Int] } yield { executePaginated(Request(cleanUrl, request.classType))(params + ("start" -> nextPageStart.toString)).value .getOrElse(Seq.empty) }).getOrElse(Seq.empty) RequestResponse(Some((json \ "values").as[Seq[T]] ++ nextRepos)) case Left(resp) => resp } } def executePaginatedWithPageRequest[T](request: Request[Seq[T]], pageRequest: PageRequest)( params: Map[String, String] = Map.empty )(implicit reader: Reads[T]): RequestResponse[Seq[T]] = { val cleanUrl = request.path.takeWhile(_ != '?') get[Seq[T]]( cleanUrl, params ++ Map("start" -> pageRequest.getStart.toString, "limit" -> pageRequest.getLimit.toString) ) match { case Right(json) => RequestResponse( value = Some((json \ "values").as[Seq[T]]), nextPageStart = (json \ "nextPageStart").asOpt[Int], size = (json \ "size").asOpt[Int], limit = (json \ "limit").asOpt[Int], isLastPage = (json \ "isLastPage").asOpt[Boolean] ) case Left(error) => error } } def postJson[T](request: Request[T], values: JsValue)(implicit reader: Reads[T]): RequestResponse[T] = { performRequest("POST", request, values) } def putJson[T](request: Request[T], values: JsValue)(implicit reader: Reads[T]): RequestResponse[T] = { performRequest("PUT", request, values) } // Wrap request with authentication options private def withAuthentication(request: HttpRequest): HttpRequest = authenticator match { case Some(auth) => auth.withAuthentication(request) case None => request } /* * Does an API request */ private def performRequest[T](method: String, request: Request[T], values: JsValue)( implicit reader: Reads[T] ): RequestResponse[T] = { doRequest[T](request.path, method, Map.empty, Option(values)) match { case Right((HTTPStatusCodes.OK | HTTPStatusCodes.CREATED, body)) => parseJson[T](body).fold(identity, { jsValue => valueOrError[T](jsValue) }) case Right((HTTPStatusCodes.NO_CONTENT, _)) => RequestResponse[T](None) case Right((statusCode, body)) => getError[T](statusCode, statusCode.toString, body) case Left(requestResponse) => requestResponse } } def delete(requestUrl: String)(params: Map[String, String] = Map.empty): RequestResponse[Boolean] = { doRequest[Boolean](requestUrl, "DELETE", params, None) match { case Right((HTTPStatusCodes.NO_CONTENT, _)) => RequestResponse[Boolean](Option(true)) case Right((HTTPStatusCodes.OK, body)) => parseJson[JsObject](body).fold({ error => RequestResponse[Boolean](None, message = error.message, hasError = true) }, { _ => RequestResponse[Boolean](Option(true)) }) case Right((statusCode, body)) => getError[Boolean](statusCode, statusCode.toString, body) case Left(requestResponse) => requestResponse } } private def get[T]( requestUrl: String, params: Map[String, String] = Map.empty ): Either[RequestResponse[T], JsValue] = { doRequest[T](requestUrl, "GET", params, None) match { case Right((HTTPStatusCodes.OK | HTTPStatusCodes.CREATED, body)) => parseJson[T](body) case Right((statusCode, body)) => Left(getError[T](statusCode, statusCode.toString, body)) case Left(error) => Left(error) } } def doRequest[T]( requestPath: String, method: String, params: Map[String, String] = Map.empty, payload: Option[JsValue] = None ): Either[RequestResponse[T], (Int, String)] = { val url = generateUrl(requestPath) try { val baseRequestWithoutCertificatesOption = Http(url).method(method).params(params) val baseRequest = if (acceptAllCertificates) { baseRequestWithoutCertificatesOption.option(HttpOptions.allowUnsafeSSL) } else { baseRequestWithoutCertificatesOption } val request = payload .fold(baseRequest)( p => // Supports PUT and POST of JSON baseRequest .header("content-type", "application/json") .copy(connectFunc = StringBodyConnectFunc(Json.stringify(p))) ) val authenticatedRequest = withAuthentication(request) val response = authenticatedRequest.asString //if the response code is a redirect, follow it if (HTTPStatusCodes.Redirects.all.contains(response.code)) { followRedirect(method, params, payload, response) } else { Right((response.code, response.body)) } } catch { case NonFatal(exception) => Left(RequestResponse[T](value = None, message = exception.getMessage, hasError = true)) } } /** * Checks the new location on the header of the [[HttpResponse]] passed by parameter * and follows the redirect by making a new request. It returns the response if it is unable * to get the location from the header. * @param method The method of the request * @param params The parameters of the request * @param payload The payload of the request * @param response The response to extract the new location or to return as default. */ private def followRedirect[T]( method: String, params: Map[String, String], payload: Option[JsValue], response: HttpResponse[String] ): Either[RequestResponse[T], (Int, String)] = { response.headers.get("Location") match { case Some(Vector(newLocation)) => val newPath = new URL(newLocation).getPath doRequest(newPath, method, params, payload) case _ => Right((response.code, response.body)) } } private def valueOrError[T](json: JsValue)(implicit reader: Reads[T]): RequestResponse[T] = { json.validate[T] match { case s: JsSuccess[T] => RequestResponse(Some(s.value)) case e: JsError => val msg = s"""|Failed to validate json: |$json |JsError errors: |${e.errors.mkString(System.lineSeparator)} """.stripMargin RequestResponse[T](None, message = msg, hasError = true) } } private def getError[T](status: Int, statusText: String, body: String): RequestResponse[T] = { val msg = s"""|$status: $statusText |Body: |$body """.stripMargin RequestResponse[T](None, message = msg, hasError = true) } private def parseJson[T](input: String): Either[RequestResponse[T], JsValue] = { val json = Json.parse(input) val errorOpt = (json \ "errors") .asOpt[Seq[ResponseError]] .map(_.map { error => s"""|Context: ${error.context.getOrElse("None")} |Exception: ${error.exceptionName.getOrElse("None")} |Message: ${error.message} """.stripMargin }.mkString(Properties.lineSeparator)) errorOpt .map { error => Left(RequestResponse[T](None, message = error, hasError = true)) } .getOrElse(Right(json)) } private def generateUrl(endpoint: String) = { s"$apiUrl$endpoint" } }
codacy/stash-scala-client
src/main/scala/com/codacy/client/stash/client/StashClient.scala
Scala
apache-2.0
8,628
package frameless package ml package feature import frameless.ml.feature.TypedStringIndexer.HandleInvalid import frameless.ml.internals.UnaryInputsChecker import org.apache.spark.ml.feature.{StringIndexer, StringIndexerModel} /** * A label indexer that maps a string column of labels to an ML column of label indices. * The indices are in [0, numLabels), ordered by label frequencies. * So the most frequent label gets index 0. * * @see `TypedIndexToString` for the inverse transformation */ final class TypedStringIndexer[Inputs] private[ml](stringIndexer: StringIndexer, inputCol: String) extends TypedEstimator[Inputs, TypedStringIndexer.Outputs, StringIndexerModel] { val estimator: StringIndexer = stringIndexer .setInputCol(inputCol) .setOutputCol(AppendTransformer.tempColumnName) def setHandleInvalid(value: HandleInvalid): TypedStringIndexer[Inputs] = copy(stringIndexer.setHandleInvalid(value.sparkValue)) private def copy(newStringIndexer: StringIndexer): TypedStringIndexer[Inputs] = new TypedStringIndexer[Inputs](newStringIndexer, inputCol) } object TypedStringIndexer { case class Outputs(indexedOutput: Double) sealed abstract class HandleInvalid(val sparkValue: String) object HandleInvalid { case object Error extends HandleInvalid("error") case object Skip extends HandleInvalid("skip") case object Keep extends HandleInvalid("keep") } def apply[Inputs](implicit inputsChecker: UnaryInputsChecker[Inputs, String]): TypedStringIndexer[Inputs] = { new TypedStringIndexer[Inputs](new StringIndexer(), inputsChecker.inputCol) } }
adelbertc/frameless
ml/src/main/scala/frameless/ml/feature/TypedStringIndexer.scala
Scala
apache-2.0
1,612
package ch02 import org.specs2.mutable.Specification class Ex23CurrySpec extends Specification{ "Curry function " should { "" in { //Given //When //Then ok } } }
IrfanAnsari/fpinscala
src/test/scala/ch02/Ex23CurrySpec.scala
Scala
mit
210
package storage import scaldi.Module import scala.language.existentials package object postgres { val dbProfile = EnhancedPostgresDriver.profile val dbSimple = EnhancedPostgresDriver.simple class DbModule extends Module { import scala.slick.jdbc.JdbcBackend.Database bind[Database] to Database.forDataSource(ConnectionPool()) } }
onurzdg/spray-app
src/main/scala/storage/postgres/package.scala
Scala
apache-2.0
351
/** * This file contains all DPF concepts that aren't graph. * I tried to keep all definitions very close to what have been defined in * Adrian Rutle's PhD thesis https://bora.uib.no/handle/1956/4469 with a few exceptions: * 1. The constraint semantics (i.e. the OCL) is mapped to a signature and not to the model. * I had it first different but I found it very impractical to keep a "meta-model" and define * the semantic for predicates model specific. * 2. I allow to use different signatures in each specification. * This allows to group and reuse specifications according to user defined topics. */ package no.hib.dpf.text.scala.ct; /** * A validator for a constraint (as defined in a signature) */ case class Validator(id: RId, n: String, ps_var: List[String], arity: List[Element],tLanguage: String, template: String, errorMsg: String) /** * A constraint (as used in a specification) */ case class Constraint(ps: List[String], arity_d: List[Element], validator: Validator) /** * A specification ("S" like in Adrian Rutle's thesis) */ case class S(g: AbstractGraph, csLists: List[Set[Constraint]]) { //Specification private def inv(_g: AbstractGraph, _cs: Set[Constraint]): Boolean = { _cs foreach { _p => for (_e <- _p.arity_d) { _e match{ case Arrow(_,sr,tg,TypeArrow.TInheritance) => _g match { case ig:IGraph => if(!(ig.inh contains sr)) return false if(!(ig.inh(sr) contains tg)) return false case _ => return false } case _ => if (!(_g contains _e)) return false } } } return true; } if (!inv(g, cs)) { sys.error("not valid specification") } def cs:Set[Constraint]=csLists.flatten.toSet override def toString = "S(\\n" + g + "\\n\\t" + constraintsToString + "\\n)"; protected def constraintsToString = (for (c <- cs) yield format(c)) protected def elementsToString(es: List[Element]) = (for (e <- es) yield g.format(e)) def format(c: Constraint): String = c.validator.n + "@" + c.validator.id.v + "(" + c.ps.mkString + ")" + "{Elements(" + elementsToString(c.arity_d) + ")}"; } /** * A specification instance. mm = meta-specification / meta-model */ case class IS(mm: S, g: AbstractGraph) { //Instance specification private def inv(_mm: S, _g: AbstractGraph): Boolean = _mm.g == _g.tgraph if (!inv(mm, g)) { sys.error("not valid instance specification") } } /** * Specification Descriptor */ case class SInfo(key:FKey,t:FKey, signatures:List[FKey]); /** * Companion object adding additional "constructors" for case class SInfo */ object SInfo { def apply(key:FKey,t:FKey):SInfo = { SInfo(key,t,Nil) } def apply(name: String, path: String, version: String, vNo: Int, vNext: Int, tName: String, tVersionName: String, signatureList: List[FKey] = Nil):SInfo = { val id = FKey(name, path, version, vNo, vNext) val t = FKey(tName, path,tVersionName) val sList = if (null == signatureList) {Nil} else {signatureList} SInfo(id, t, sList) } } /** * The predefined DPF specification containing a node and an arrow * Additionally support for attributes have been added. */ object Dpf { val Spec = S(Dpf.Graph, Nil) case object Graph extends AbstractGraph() { val node = Node(RId(Set(0)), TypeNode.TSelf) val arrow = Arrow(RId(Set(1)), node, node, TypeArrow.TSelf) val datatype = TypeNode.TAttribute val attribute = TypeArrow.TAttribute override val tKey = FKey("DPF", None, Some(Version("1",1,2))) override val tgraph = this override val nodes = Map[EId, Node](node.id -> node, datatype.id -> datatype) override val arrows = Map[EId, Arrow](arrow.id -> arrow, attribute.id -> attribute) override val names = Map[EId, String](node.id -> "Vertex", arrow.id -> "edge", datatype.id -> datatype.toString, attribute.id -> attribute.toString) override val in = Map[Node, Map[TypeArrow, Set[Arrow]]](node -> Map(arrow -> Set(arrow)), datatype -> Map(attribute -> Set(attribute))) override val out = Map[Node, Map[TypeArrow, Set[Arrow]]](node -> Map(arrow -> Set(arrow), attribute -> Set(attribute))) override val toString = super.toString } }
fmantz/DPF_Text
no.hib.dpf.text/src_scala/no/hib/dpf/text/scala/ct/4_DPF.scala
Scala
epl-1.0
4,263
package freecli package option package dsl import shapeless._ import shapeless.ops.hlist.{Diff, Intersection, LeftFolder} import core.api.CanProduce import option.api.StringValue trait StringValueImplicits { type StringValueTypes = StringValue :: HNil implicit def canProduceStringValue[T, H <: HList, Out0 <: HList, Rem <: HList]( implicit ev: Intersection.Aux[H, StringValueTypes, Out0], ev2: LeftFolder.Aux[Out0, Option[StringValue], stringValueBuilder.type, StringValue], ev3: Diff.Aux[H, Out0, Rem]) = { new CanProduce[H] { type Out = (StringValue, Rem) def apply(list: H): Out = { val inters = ev.apply(list) val field = inters.foldLeft(Option.empty[StringValue])(stringValueBuilder) val remaining = ev3.apply(list) field -> remaining } } } object stringValueBuilder extends Poly2 { implicit def caseStringValue: Case.Aux[Option[StringValue], StringValue, StringValue] = at[Option[StringValue], StringValue] { case (_, d: StringValue) => d } } }
pavlosgi/freecli
core/src/main/scala/freecli/option/dsl/StringValueImplicits.scala
Scala
apache-2.0
1,070
/** * Licensed to Big Data Genomics (BDG) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The BDG licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.bdgenomics.utils.instrumentation import com.netflix.servo.monitor.Monitor import java.io.PrintWriter /** * Helper functions for instrumentation */ object InstrumentationFunctions { def renderTable(out: PrintWriter, name: String, timers: Seq[Monitor[_]], header: Seq[TableHeader]) = { val monitorTable = new MonitorTable(header.toArray, timers.toArray) out.println(name) monitorTable.print(out) } def formatNanos(number: Any): String = { // We need to do some dynamic type checking here, as monitors return an Object number match { case number: Number => DurationFormatting.formatNanosecondDuration(number) case null => "-" case _ => throw new IllegalArgumentException("Cannot format non-numeric value [" + number + "]") } } }
nfergu/bdg-utils
utils-metrics/src/main/scala/org/bdgenomics/utils/instrumentation/InstrumentationFunctions.scala
Scala
apache-2.0
1,612
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.flink.table.planner.expressions import org.apache.flink.api.common.typeinfo.Types import org.apache.flink.api.java.typeutils.RowTypeInfo import org.apache.flink.table.api.DataTypes import org.apache.flink.table.api.scala._ import org.apache.flink.table.expressions.TimeIntervalUnit import org.apache.flink.table.planner.expressions.utils.ExpressionTestBase import org.apache.flink.table.planner.utils.DateTimeTestUtil import org.apache.flink.table.planner.utils.DateTimeTestUtil._ import org.apache.flink.table.typeutils.TimeIntervalTypeInfo import org.apache.flink.types.Row import org.junit.Test import java.sql.Timestamp import java.text.SimpleDateFormat import java.time.{Instant, ZoneId} import java.util.{Locale, TimeZone} class TemporalTypesTest extends ExpressionTestBase { @Test def testTimePointLiterals(): Unit = { testAllApis( "1990-10-14".toDate, "'1990-10-14'.toDate", "DATE '1990-10-14'", "1990-10-14") testTableApi( localDate2Literal(localDate("2040-09-11")), "'2040-09-11'.toDate", "2040-09-11") testAllApis( "1500-04-30".cast(DataTypes.DATE), "'1500-04-30'.cast(SQL_DATE)", "CAST('1500-04-30' AS DATE)", "1500-04-30") testAllApis( "15:45:59".toTime, "'15:45:59'.toTime", "TIME '15:45:59'", "15:45:59") testTableApi( localTime2Literal(DateTimeTestUtil.localTime("00:00:00")), "'00:00:00'.toTime", "00:00:00") testAllApis( "1:30:00".cast(DataTypes.TIME), "'1:30:00'.cast(SQL_TIME)", "CAST('1:30:00' AS TIME)", "01:30:00") testAllApis( "1990-10-14 23:00:00.123".toTimestamp, "'1990-10-14 23:00:00.123'.toTimestamp", "TIMESTAMP '1990-10-14 23:00:00.123'", "1990-10-14 23:00:00.123") testTableApi( localDateTime2Literal(localDateTime("2040-09-11 00:00:00.000")), "'2040-09-11 00:00:00.000'.toTimestamp", "2040-09-11 00:00:00.000") testAllApis( "1500-04-30 12:00:00".cast(DataTypes.TIMESTAMP(3)), "'1500-04-30 12:00:00'.cast(SQL_TIMESTAMP)", "CAST('1500-04-30 12:00:00' AS TIMESTAMP)", "1500-04-30 12:00:00.000") } @Test def testTimeIntervalLiterals(): Unit = { testAllApis( 1.year, "1.year", "INTERVAL '1' YEAR", "+1-00") testAllApis( 1.month, "1.month", "INTERVAL '1' MONTH", "+0-01") testAllApis( 12.days, "12.days", "INTERVAL '12' DAY", "+12 00:00:00.000") testAllApis( 1.hour, "1.hour", "INTERVAL '1' HOUR", "+0 01:00:00.000") testAllApis( 3.minutes, "3.minutes", "INTERVAL '3' MINUTE", "+0 00:03:00.000") testAllApis( 3.seconds, "3.seconds", "INTERVAL '3' SECOND", "+0 00:00:03.000") testAllApis( 3.millis, "3.millis", "INTERVAL '0.003' SECOND", "+0 00:00:00.003") } @Test def testTimePointInput(): Unit = { testAllApis( 'f0, "f0", "f0", "1990-10-14") testAllApis( 'f1, "f1", "f1", "10:20:45") testAllApis( 'f2, "f2", "f2", "1990-10-14 10:20:45.123") } @Test def testTimeIntervalInput(): Unit = { testAllApis( 'f9, "f9", "f9", "+2-00") testAllApis( 'f10, "f10", "f10", "+0 00:00:12.000") } @Test def testTimePointCasting(): Unit = { testAllApis( 'f0.cast(DataTypes.TIMESTAMP(3)), "f0.cast(SQL_TIMESTAMP)", "CAST(f0 AS TIMESTAMP)", "1990-10-14 00:00:00.000") testAllApis( 'f1.cast(DataTypes.TIMESTAMP(3)), "f1.cast(SQL_TIMESTAMP)", "CAST(f1 AS TIMESTAMP)", "1970-01-01 10:20:45.000") testAllApis( 'f2.cast(DataTypes.DATE), "f2.cast(SQL_DATE)", "CAST(f2 AS DATE)", "1990-10-14") testAllApis( 'f2.cast(DataTypes.TIME), "f2.cast(SQL_TIME)", "CAST(f2 AS TIME)", "10:20:45") testAllApis( 'f2.cast(DataTypes.TIME), "f2.cast(SQL_TIME)", "CAST(f2 AS TIME)", "10:20:45") testTableApi( 'f7.cast(DataTypes.DATE), "f7.cast(SQL_DATE)", "2002-11-09") testTableApi( 'f7.cast(DataTypes.DATE).cast(DataTypes.INT), "f7.cast(SQL_DATE).cast(INT)", "12000") testTableApi( 'f7.cast(DataTypes.TIME), "f7.cast(SQL_TIME)", "00:00:12") testTableApi( 'f7.cast(DataTypes.TIME).cast(DataTypes.INT), "f7.cast(SQL_TIME).cast(INT)", "12000") testTableApi( 'f15.cast(DataTypes.TIMESTAMP(3)), "f15.cast(SQL_TIMESTAMP)", "2016-06-27 07:23:33.000") testTableApi( 'f15.toTimestamp, "f15.toTimestamp", "2016-06-27 07:23:33.000") testTableApi( 'f8.cast(DataTypes.TIMESTAMP(3)).cast(DataTypes.BIGINT()), "f8.cast(SQL_TIMESTAMP).cast(LONG)", "1467012213000") } @Test def testTimeIntervalCasting(): Unit = { testTableApi( 'f7.cast(DataTypes.INTERVAL(DataTypes.MONTH)), "f7.cast(INTERVAL_MONTHS)", "+1000-00") testTableApi( 'f8.cast(DataTypes.INTERVAL(DataTypes.MINUTE())), "f8.cast(INTERVAL_MILLIS)", "+16979 07:23:33.000") } @Test def testTimePointComparison(): Unit = { testAllApis( 'f0 < 'f3, "f0 < f3", "f0 < f3", "false") testAllApis( 'f0 < 'f4, "f0 < f4", "f0 < f4", "true") testAllApis( 'f1 < 'f5, "f1 < f5", "f1 < f5", "false") testAllApis( 'f0.cast(DataTypes.TIMESTAMP(3)) !== 'f2, "f0.cast(SQL_TIMESTAMP) !== f2", "CAST(f0 AS TIMESTAMP) <> f2", "true") testAllApis( 'f0.cast(DataTypes.TIMESTAMP(3)) === 'f6, "f0.cast(SQL_TIMESTAMP) === f6", "CAST(f0 AS TIMESTAMP) = f6", "true") } @Test def testTimeIntervalArithmetic(): Unit = { // interval months comparison testAllApis( 12.months < 24.months, "12.months < 24.months", "INTERVAL '12' MONTH < INTERVAL '24' MONTH", "true") testAllApis( 8.years === 8.years, "8.years === 8.years", "INTERVAL '8' YEAR = INTERVAL '8' YEAR", "true") // interval millis comparison testAllApis( 8.millis > 10.millis, "8.millis > 10.millis", "INTERVAL '0.008' SECOND > INTERVAL '0.010' SECOND", "false") testAllApis( 8.millis === 8.millis, "8.millis === 8.millis", "INTERVAL '0.008' SECOND = INTERVAL '0.008' SECOND", "true") // interval months addition/subtraction testAllApis( 8.years + 10.months, "8.years + 10.months", "INTERVAL '8' YEAR + INTERVAL '10' MONTH", "+8-10") testAllApis( 2.years - 12.months, "2.years - 12.months", "INTERVAL '2' YEAR - INTERVAL '12' MONTH", "+1-00") testAllApis( -2.years, "-2.years", "-INTERVAL '2' YEAR", "-2-00") // interval millis addition/subtraction testAllApis( 8.hours + 10.minutes + 12.seconds + 5.millis, "8.hours + 10.minutes + 12.seconds + 5.millis", "INTERVAL '8' HOUR + INTERVAL '10' MINUTE + INTERVAL '12.005' SECOND", "+0 08:10:12.005") testAllApis( 1.minute - 10.seconds, "1.minute - 10.seconds", "INTERVAL '1' MINUTE - INTERVAL '10' SECOND", "+0 00:00:50.000") testAllApis( -10.seconds, "-10.seconds", "-INTERVAL '10' SECOND", "-0 00:00:10.000") // addition to date // interval millis testAllApis( 'f0 + 2.days, "f0 + 2.days", "f0 + INTERVAL '2' DAY", "1990-10-16") // interval millis testAllApis( 30.days + 'f0, "30.days + f0", "INTERVAL '30' DAY + f0", "1990-11-13") // interval months testAllApis( 'f0 + 2.months, "f0 + 2.months", "f0 + INTERVAL '2' MONTH", "1990-12-14") // interval months testAllApis( 2.months + 'f0, "2.months + f0", "INTERVAL '2' MONTH + f0", "1990-12-14") // addition to time // interval millis testAllApis( 'f1 + 12.hours, "f1 + 12.hours", "f1 + INTERVAL '12' HOUR", "22:20:45") // interval millis testAllApis( 12.hours + 'f1, "12.hours + f1", "INTERVAL '12' HOUR + f1", "22:20:45") // addition to timestamp // interval millis testAllApis( 'f2 + 10.days + 4.millis, "f2 + 10.days + 4.millis", "f2 + INTERVAL '10 00:00:00.004' DAY TO SECOND", "1990-10-24 10:20:45.127") // interval millis testAllApis( 10.days + 'f2 + 4.millis, "10.days + f2 + 4.millis", "INTERVAL '10 00:00:00.004' DAY TO SECOND + f2", "1990-10-24 10:20:45.127") // interval months testAllApis( 'f2 + 10.years, "f2 + 10.years", "f2 + INTERVAL '10' YEAR", "2000-10-14 10:20:45.123") // interval months testAllApis( 10.years + 'f2, "10.years + f2", "INTERVAL '10' YEAR + f2", "2000-10-14 10:20:45.123") // subtraction from date // interval millis testAllApis( 'f0 - 2.days, "f0 - 2.days", "f0 - INTERVAL '2' DAY", "1990-10-12") // interval millis testAllApis( -30.days + 'f0, "-30.days + f0", "INTERVAL '-30' DAY + f0", "1990-09-14") // interval months testAllApis( 'f0 - 2.months, "f0 - 2.months", "f0 - INTERVAL '2' MONTH", "1990-08-14") // interval months testAllApis( -2.months + 'f0, "-2.months + f0", "-INTERVAL '2' MONTH + f0", "1990-08-14") // subtraction from time // interval millis testAllApis( 'f1 - 12.hours, "f1 - 12.hours", "f1 - INTERVAL '12' HOUR", "22:20:45") // interval millis testAllApis( -12.hours + 'f1, "-12.hours + f1", "INTERVAL '-12' HOUR + f1", "22:20:45") // subtraction from timestamp // interval millis testAllApis( 'f2 - 10.days - 4.millis, "f2 - 10.days - 4.millis", "f2 - INTERVAL '10 00:00:00.004' DAY TO SECOND", "1990-10-04 10:20:45.119") // interval millis testAllApis( -10.days + 'f2 - 4.millis, "-10.days + f2 - 4.millis", "INTERVAL '-10 00:00:00.004' DAY TO SECOND + f2", "1990-10-04 10:20:45.119") // interval months testAllApis( 'f2 - 10.years, "f2 - 10.years", "f2 - INTERVAL '10' YEAR", "1980-10-14 10:20:45.123") // interval months testAllApis( -10.years + 'f2, "-10.years + f2", "INTERVAL '-10' YEAR + f2", "1980-10-14 10:20:45.123") // casting testAllApis( -'f9.cast(DataTypes.INTERVAL(DataTypes.MONTH)), "-f9.cast(INTERVAL_MONTHS)", "-CAST(f9 AS INTERVAL YEAR)", "-2-00") testAllApis( -'f10.cast(DataTypes.INTERVAL(DataTypes.MINUTE())), "-f10.cast(INTERVAL_MILLIS)", "-CAST(f10 AS INTERVAL SECOND)", "-0 00:00:12.000") // addition/subtraction of interval millis and interval months testAllApis( 'f0 + 2.days + 1.month, "f0 + 2.days + 1.month", "f0 + INTERVAL '2' DAY + INTERVAL '1' MONTH", "1990-11-16") testAllApis( 'f0 - 2.days - 1.month, "f0 - 2.days - 1.month", "f0 - INTERVAL '2' DAY - INTERVAL '1' MONTH", "1990-09-12") testAllApis( 'f2 + 2.days + 1.month, "f2 + 2.days + 1.month", "f2 + INTERVAL '2' DAY + INTERVAL '1' MONTH", "1990-11-16 10:20:45.123") testAllApis( 'f2 - 2.days - 1.month, "f2 - 2.days - 1.month", "f2 - INTERVAL '2' DAY - INTERVAL '1' MONTH", "1990-09-12 10:20:45.123") } @Test def testSelectNullValues(): Unit ={ testAllApis( 'f11, "f11", "f11", "null" ) testAllApis( 'f12, "f12", "f12", "null" ) testAllApis( 'f13, "f13", "f13", "null" ) } @Test def testTemporalNullValues() = { testAllApis( 'f13.extract(TimeIntervalUnit.HOUR), "f13.extract(HOUR)", "extract(HOUR FROM f13)", "null" ) testAllApis( 'f13.floor(TimeIntervalUnit.HOUR), "f13.floor(HOUR)", "FLOOR(f13 TO HOUR)", "null" ) testSqlApi( "TO_TIMESTAMP(SUBSTRING('', 2, -1))", "null" ) testSqlApi( "TO_TIMESTAMP(f14, 'yyyy-mm-dd')", "null" ) } @Test def testDateFormat(): Unit = { testSqlApi( "DATE_FORMAT('2018-03-14 01:02:03', 'yyyy/MM/dd HH:mm:ss')", "2018/03/14 01:02:03") testSqlApi( s"DATE_FORMAT(${timestampTz("2018-03-14 01:02:03")}, 'yyyy-MM-dd HH:mm:ss')", "2018-03-14 01:02:03") } @Test def testDateAndTime(): Unit = { testSqlApi( "DATE '2018-03-14'", "2018-03-14") testSqlApi( "TIME '19:01:02.123'", "19:01:02") // DATE & TIME testSqlApi("CAST('12:44:31' AS TIME)", "12:44:31") testSqlApi("CAST('2018-03-18' AS DATE)", "2018-03-18") testSqlApi("TIME '12:44:31'", "12:44:31") testSqlApi("TO_DATE('2018-03-18')", "2018-03-18") // EXTRACT //testSqlApi("TO_DATE(1521331200)", "2018-03-18") testSqlApi("EXTRACT(HOUR FROM TIME '06:07:08')", "6") testSqlApi("EXTRACT(MINUTE FROM TIME '06:07:08')", "7") //testSqlApi("EXTRACT(HOUR FROM TO_TIME('06:07:08'))", "6") NO TO_TIME funciton testSqlApi("EXTRACT(HOUR FROM CAST('06:07:08' AS TIME))", "6") testSqlApi("EXTRACT(DAY FROM CAST('2018-03-18' AS DATE))", "18") testSqlApi("EXTRACT(DAY FROM DATE '2018-03-18')", "18") testSqlApi("EXTRACT(DAY FROM TO_DATE('2018-03-18'))", "18") testSqlApi("EXTRACT(MONTH FROM TO_DATE('2018-01-01'))", "1") testSqlApi("EXTRACT(YEAR FROM TO_DATE('2018-01-01'))", "2018") testSqlApi("EXTRACT(QUARTER FROM TO_DATE('2018-01-01'))", "1") // Floor & Ceil // TODO: fix this legacy bug //testSqlApi("CEIL(TO_DATE('2018-03-18') TO DAY)", "2018-04-01") //testSqlApi("CEIL(TIMESTAMP '2018-03-20 06:10:31' TO HOUR)", "2018-03-20 07:00:00.000") } private def timestampTz(str: String) = { s"CAST(TIMESTAMP '$str' AS TIMESTAMP_WITH_LOCAL_TIME_ZONE)" } @Test def testTemporalShanghai(): Unit = { config.setLocalTimeZone(ZoneId.of("Asia/Shanghai")) testSqlApi(timestampTz("2018-03-14 19:01:02.123"), "2018-03-14 19:01:02.123") testSqlApi(timestampTz("2018-03-14 19:00:00.010"), "2018-03-14 19:00:00.010") // DATE_FORMAT testSqlApi( "DATE_FORMAT('2018-03-14 01:02:03', 'yyyy/MM/dd HH:mm:ss')", "2018/03/14 01:02:03") testSqlApi( s"DATE_FORMAT(${timestampTz("2018-03-14 01:02:03")}, 'yyyy-MM-dd HH:mm:ss')", "2018-03-14 01:02:03") // EXTRACT val extractT1 = timestampTz("2018-03-20 07:59:59") testSqlApi(s"EXTRACT(DAY FROM $extractT1)", "20") testSqlApi(s"EXTRACT(HOUR FROM $extractT1)", "7") testSqlApi(s"EXTRACT(MONTH FROM $extractT1)", "3") testSqlApi(s"EXTRACT(YEAR FROM $extractT1)", "2018") testSqlApi("EXTRACT(DAY FROM INTERVAL '19 12:10:10.123' DAY TO SECOND(3))", "19") testSqlApi("EXTRACT(HOUR FROM TIME '01:02:03')", "1") testSqlApi("EXTRACT(DAY FROM INTERVAL '19 12:10:10.123' DAY TO SECOND(3))", "19") // FLOOR & CEIL testSqlApi("FLOOR(TIME '12:44:31' TO MINUTE)", "12:44:00") testSqlApi("FLOOR(TIME '12:44:31' TO HOUR)", "12:00:00") testSqlApi("CEIL(TIME '12:44:31' TO MINUTE)", "12:45:00") testSqlApi("CEIL(TIME '12:44:31' TO HOUR)", "13:00:00") testSqlApi("FLOOR(TIMESTAMP '2018-03-20 06:44:31' TO HOUR)", "2018-03-20 06:00:00.000") testSqlApi("FLOOR(TIMESTAMP '2018-03-20 06:44:31' TO DAY)", "2018-03-20 00:00:00.000") testSqlApi("FLOOR(TIMESTAMP '2018-03-20 00:00:00' TO DAY)", "2018-03-20 00:00:00.000") testSqlApi("FLOOR(TIMESTAMP '2018-04-01 06:44:31' TO MONTH)", "2018-04-01 00:00:00.000") testSqlApi("FLOOR(TIMESTAMP '2018-01-01 06:44:31' TO MONTH)", "2018-01-01 00:00:00.000") testSqlApi("CEIL(TIMESTAMP '2018-03-20 06:44:31' TO HOUR)", "2018-03-20 07:00:00.000") testSqlApi("CEIL(TIMESTAMP '2018-03-20 06:00:00' TO HOUR)", "2018-03-20 06:00:00.000") testSqlApi("CEIL(TIMESTAMP '2018-03-20 06:44:31' TO DAY)", "2018-03-21 00:00:00.000") testSqlApi("CEIL(TIMESTAMP '2018-03-01 00:00:00' TO DAY)", "2018-03-01 00:00:00.000") testSqlApi("CEIL(TIMESTAMP '2018-03-31 00:00:01' TO DAY)", "2018-04-01 00:00:00.000") testSqlApi("CEIL(TIMESTAMP '2018-03-01 21:00:01' TO MONTH)", "2018-03-01 00:00:00.000") testSqlApi("CEIL(TIMESTAMP '2018-03-01 00:00:00' TO MONTH)", "2018-03-01 00:00:00.000") testSqlApi("CEIL(TIMESTAMP '2018-12-02 00:00:00' TO MONTH)", "2019-01-01 00:00:00.000") testSqlApi("CEIL(TIMESTAMP '2018-01-01 21:00:01' TO YEAR)", "2018-01-01 00:00:00.000") testSqlApi("CEIL(TIMESTAMP '2018-01-02 21:00:01' TO YEAR)", "2019-01-01 00:00:00.000") testSqlApi(s"FLOOR(${timestampTz("2018-03-20 06:44:31")} TO HOUR)", "2018-03-20 06:00:00.000") testSqlApi(s"FLOOR(${timestampTz("2018-03-20 06:44:31")} TO DAY)", "2018-03-20 00:00:00.000") testSqlApi(s"FLOOR(${timestampTz("2018-03-20 00:00:00")} TO DAY)", "2018-03-20 00:00:00.000") testSqlApi(s"FLOOR(${timestampTz("2018-04-01 06:44:31")} TO MONTH)", "2018-04-01 00:00:00.000") testSqlApi(s"FLOOR(${timestampTz("2018-01-01 06:44:31")} TO MONTH)", "2018-01-01 00:00:00.000") testSqlApi(s"CEIL(${timestampTz("2018-03-20 06:44:31")} TO HOUR)", "2018-03-20 07:00:00.000") testSqlApi(s"CEIL(${timestampTz("2018-03-20 06:00:00")} TO HOUR)", "2018-03-20 06:00:00.000") testSqlApi(s"CEIL(${timestampTz("2018-03-20 06:44:31")} TO DAY)", "2018-03-21 00:00:00.000") testSqlApi(s"CEIL(${timestampTz("2018-03-1 00:00:00")} TO DAY)", "2018-03-01 00:00:00.000") testSqlApi(s"CEIL(${timestampTz("2018-03-31 00:00:01")} TO DAY)", "2018-04-01 00:00:00.000") testSqlApi(s"CEIL(${timestampTz("2018-03-01 21:00:01")} TO MONTH)", "2018-03-01 00:00:00.000") testSqlApi(s"CEIL(${timestampTz("2018-03-01 00:00:00")} TO MONTH)", "2018-03-01 00:00:00.000") testSqlApi(s"CEIL(${timestampTz("2018-12-02 00:00:00")} TO MONTH)", "2019-01-01 00:00:00.000") testSqlApi(s"CEIL(${timestampTz("2018-01-01 21:00:01")} TO YEAR)", "2018-01-01 00:00:00.000") testSqlApi(s"CEIL(${timestampTz("2018-01-02 21:00:01")} TO YEAR)", "2019-01-01 00:00:00.000") // others testSqlApi("QUARTER(DATE '2016-04-12')", "2") testSqlApi( "(TIME '2:55:00', INTERVAL '1' HOUR) OVERLAPS (TIME '3:30:00', INTERVAL '2' HOUR)", "true") testSqlApi( "CEIL(f17 TO HOUR)", "1990-10-14 08:00:00.000" ) testSqlApi( "FLOOR(f17 TO DAY)", "1990-10-14 00:00:00.000" ) // TIMESTAMP_ADD // 1520960523000 "2018-03-14T01:02:03+0800" testSqlApi("TIMESTAMPADD(HOUR, +8, TIMESTAMP '2017-11-29 10:58:58.998')", "2017-11-29 18:58:58.998") val sdf = new SimpleDateFormat("yyyy-MM-dd") sdf.setTimeZone(TimeZone.getTimeZone("UTC")) val currMillis = System.currentTimeMillis() val ts = new Timestamp(currMillis) val currDateStr = sdf.format(ts) testSqlApi("CURRENT_DATE", currDateStr) //testSqlApi("CURRENT_TIME", "") } @Test def testDaylightSavingTimeZone(): Unit = { // test from MySQL // https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_unix-timestamp // due to conventions for local time zone changes such as Daylight Saving Time (DST), // it is possible for UNIX_TIMESTAMP() to map two values that are distinct in a non-UTC // time zone to the same Unix timestamp value config.setLocalTimeZone(ZoneId.of("MET")) // Europe/Amsterdam testSqlApi("UNIX_TIMESTAMP('2005-03-27 03:00:00')", "1111885200") testSqlApi("UNIX_TIMESTAMP('2005-03-27 02:00:00')", "1111885200") testSqlApi("FROM_UNIXTIME(1111885200)", "2005-03-27 03:00:00") } @Test def testHourUnitRangoonTimeZone(): Unit = { // Asia/Rangoon UTC Offset 6.5 config.setLocalTimeZone(ZoneId.of("Asia/Rangoon")) val t1 = timestampTz("2018-03-20 06:10:31") val t2 = timestampTz("2018-03-20 06:00:00") // 1521502831000, 2018-03-19 23:40:31 UTC, 2018-03-20 06:10:31 +06:30 testSqlApi(s"EXTRACT(HOUR FROM $t1)", "6") testSqlApi(s"FLOOR($t1 TO HOUR)", "2018-03-20 06:00:00.000") testSqlApi(s"FLOOR($t2 TO HOUR)", "2018-03-20 06:00:00.000") testSqlApi(s"CEIL($t2 TO HOUR)", "2018-03-20 06:00:00.000") testSqlApi(s"CEIL($t1 TO HOUR)", "2018-03-20 07:00:00.000") } @Test def testNullableCases(): Unit = { testSqlApi("CONVERT_TZ(cast(NULL as varchar), 'UTC', 'Asia/Shanghai')", nullable) testSqlApi("DATE_FORMAT(cast(NULL as varchar), 'yyyy/MM/dd HH:mm:ss')", nullable) testSqlApi("FROM_UNIXTIME(cast(NULL as bigInt))", nullable) testSqlApi("TO_DATE(cast(NULL as varchar))", nullable) } @Test def testInvalidInputCase(): Unit = { val invalidStr = "invalid value" testSqlApi(s"DATE_FORMAT('$invalidStr', 'yyyy/MM/dd HH:mm:ss')", nullable) testSqlApi(s"TO_TIMESTAMP('$invalidStr', 'yyyy-mm-dd')", nullable) testSqlApi(s"TO_DATE('$invalidStr')", nullable) testSqlApi( s"CONVERT_TZ('$invalidStr', 'UTC', 'Asia/Shanghai')", nullable) } @Test def testTypeInferenceWithInvalidInput(): Unit = { val invalidStr = "invalid value" val cases = Seq( s"DATE_FORMAT('$invalidStr', 'yyyy/MM/dd HH:mm:ss')", s"TO_TIMESTAMP('$invalidStr', 'yyyy-mm-dd')", s"TO_DATE('$invalidStr')", s"CONVERT_TZ('$invalidStr', 'UTC', 'Asia/Shanghai')") cases.foreach { caseExpr => testSqlNullable(caseExpr) } } @Test def testConvertTZ(): Unit = { testSqlApi("CONVERT_TZ('2018-03-14 11:00:00', 'UTC', 'Asia/Shanghai')", "2018-03-14 19:00:00") } @Test def testFromUnixTime(): Unit = { val sdf1 = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss", Locale.US) val fmt2 = "yyyy-MM-dd HH:mm:ss.SSS" val sdf2 = new SimpleDateFormat(fmt2, Locale.US) val fmt3 = "yy-MM-dd HH-mm-ss" val sdf3 = new SimpleDateFormat(fmt3, Locale.US) testSqlApi( "from_unixtime(f21)", sdf1.format(new Timestamp(44000))) testSqlApi( s"from_unixtime(f21, '$fmt2')", sdf2.format(new Timestamp(44000))) testSqlApi( s"from_unixtime(f21, '$fmt3')", sdf3.format(new Timestamp(44000))) testSqlApi( "from_unixtime(f22)", sdf1.format(new Timestamp(3000))) testSqlApi( s"from_unixtime(f22, '$fmt2')", sdf2.format(new Timestamp(3000))) testSqlApi( s"from_unixtime(f22, '$fmt3')", sdf3.format(new Timestamp(3000))) // test with null input testSqlApi( "from_unixtime(cast(null as int))", "null") } @Test def testFromUnixTimeInTokyo(): Unit = { config.setLocalTimeZone(ZoneId.of("Asia/Tokyo")) val fmt = "yy-MM-dd HH-mm-ss" testSqlApi( "from_unixtime(f21)", "1970-01-01 09:00:44") testSqlApi( s"from_unixtime(f21, '$fmt')", "70-01-01 09-00-44") testSqlApi( "from_unixtime(f22)", "1970-01-01 09:00:03") testSqlApi( s"from_unixtime(f22, '$fmt')", "70-01-01 09-00-03") } @Test def testUnixTimestamp(): Unit = { val ts1 = Timestamp.valueOf("2015-07-24 10:00:00.3") val ts2 = Timestamp.valueOf("2015-07-25 02:02:02.2") val s1 = "2015/07/24 10:00:00.5" val s2 = "2015/07/25 02:02:02.6" val ss1 = "2015-07-24 10:00:00" val ss2 = "2015-07-25 02:02:02" val fmt = "yyyy/MM/dd HH:mm:ss.S" testSqlApi(s"UNIX_TIMESTAMP('$ss1')", (ts1.getTime / 1000L).toString) testSqlApi(s"UNIX_TIMESTAMP('$ss2')", (ts2.getTime / 1000L).toString) testSqlApi(s"UNIX_TIMESTAMP('$s1', '$fmt')", (ts1.getTime / 1000L).toString) testSqlApi(s"UNIX_TIMESTAMP('$s2', '$fmt')", (ts2.getTime / 1000L).toString) } @Test def testUnixTimestampInTokyo(): Unit = { config.setLocalTimeZone(ZoneId.of("Asia/Tokyo")) testSqlApi( "UNIX_TIMESTAMP('2015-07-24 10:00:00')", "1437699600") testSqlApi( "UNIX_TIMESTAMP('2015/07/24 10:00:00.5', 'yyyy/MM/dd HH:mm:ss.S')", "1437699600") } // ---------------------------------------------------------------------------------------------- override def testData: Row = { val testData = new Row(23) testData.setField(0, localDate("1990-10-14")) testData.setField(1, DateTimeTestUtil.localTime("10:20:45")) testData.setField(2, localDateTime("1990-10-14 10:20:45.123")) testData.setField(3, localDate("1990-10-13")) testData.setField(4, localDate("1990-10-15")) testData.setField(5, DateTimeTestUtil.localTime("00:00:00")) testData.setField(6, localDateTime("1990-10-14 00:00:00.0")) testData.setField(7, 12000) testData.setField(8, 1467012213000L) testData.setField(9, 24) testData.setField(10, 12000L) // null selection test. testData.setField(11, null) testData.setField(12, null) testData.setField(13, null) testData.setField(14, null) testData.setField(15, 1467012213L) testData.setField(16, localDateTime("1990-10-14 10:20:45.123").atZone(ZoneId.of("UTC")).toInstant) testData.setField(17, localDateTime("1990-10-14 00:00:00.0").atZone(ZoneId.of("UTC")).toInstant) testData.setField(18, Instant.ofEpochMilli(1521025200000L)) testData.setField(19, Instant.ofEpochMilli(1520960523000L)) testData.setField(20, Instant.ofEpochMilli(1520827201000L)) testData.setField(21, 44L) testData.setField(22, 3) testData } override def typeInfo: RowTypeInfo = { new RowTypeInfo( /* 0 */ Types.LOCAL_DATE, /* 1 */ Types.LOCAL_TIME, /* 2 */ Types.LOCAL_DATE_TIME, /* 3 */ Types.LOCAL_DATE, /* 4 */ Types.LOCAL_DATE, /* 5 */ Types.LOCAL_TIME, /* 6 */ Types.LOCAL_DATE_TIME, /* 7 */ Types.INT, /* 8 */ Types.LONG, /* 9 */ TimeIntervalTypeInfo.INTERVAL_MONTHS, /* 10 */ TimeIntervalTypeInfo.INTERVAL_MILLIS, /* 11 */ Types.LOCAL_DATE, /* 12 */ Types.LOCAL_TIME, /* 13 */ Types.LOCAL_DATE_TIME, /* 14 */ Types.STRING, /* 15 */ Types.LONG, /* 16 */ Types.INSTANT, /* 17 */ Types.INSTANT, /* 18 */ Types.INSTANT, /* 19 */ Types.INSTANT, /* 20 */ Types.INSTANT, /* 21 */ Types.LONG, /* 22 */ Types.INT) } }
fhueske/flink
flink-table/flink-table-planner-blink/src/test/scala/org/apache/flink/table/planner/expressions/TemporalTypesTest.scala
Scala
apache-2.0
27,358
/** * Licensed to Big Data Genomics (BDG) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The BDG licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.bdgenomics.avocado.calls.pileup import scala.math.pow object EMForAlleles { /** * Main MAF EM function * IN: Phi - an initial MAF vector of length number of SNPs * GL - Array of arrays of likelihood triples P( D | g ) * (note these are NOT multiplied by P(g | phi)! ) * OUT: Phi - ML estimate of MAF's across SNPs * * Note: GL is currently an array of (numSnps) arrays of length (numInds), */ def emForMAF(Phi: Array[Double], GL: Array[Array[(Double, Double, Double)]]): Array[Double] = { var eps = 1.0 val tol = 0.0001 val L = Phi.length var phi_updates = Phi while (eps > tol) { var Phi_next = Array.fill(L) { 0.0 } Phi_next.indices.foreach(i => { GL(i).foreach(l => { Phi_next(i) += (1.0 / (2.0 * GL(i).length)) * ((1.0 * l._2 * 2.0 * phi_updates(i) * (1 - phi_updates(i)) + 2.0 * l._3 * pow(phi_updates(i), 2.0)) / (l._1 * pow(1.0 - phi_updates(i), 2.0) + l._2 * 2.0 * phi_updates(i) * (1.0 - phi_updates(i)) + l._3 * pow(phi_updates(i), 2.0))) }) }) var eps = 0.0 phi_updates.indices.foreach(i => eps += pow(phi_updates(i) - Phi_next(i), 2.0)) phi_updates = Phi_next } return phi_updates } /** * Helper function to compute Y iteratively * For each site, executes the recursion in 4.2.3. Y(i) is Ynk vector for site i */ def compY(GL: Array[Array[(Double, Double, Double)]]): Array[Array[Double]] = { val L = GL.length val GLt = GL.transpose val n = GLt.length val M = 2 * n var Y = Array.ofDim[Double](L, n + 1, M + 1) // NOTE: this ordering may be suboptimal? for (i <- 0 until L) { for (k <- 0 to M) { for (j <- 0 to n) { // 0 = 0 people not first person if (j == 0) { Y(i)(j)(k) = 1.0 } else if (k == 0) { Y(i)(j)(k) = (1.0 / (2.0 * j * (2.0 * j - 1.0))) * ((2.0 * j - k) * (2.0 * j - k - 1.0) * Y(i)(j - 1)(k) * GL(i)(j)._1) } else if (k == 1) { Y(i)(j)(k) = (1.0 / (2.0 * j * (2.0 * j - 1.0))) * ((2.0 * j - k) * (2.0 * j - k - 1.0) * Y(i)(j - 1)(k) * GL(i)(j)._1 + 2.0 * k * (2.0 * j - k) * Y(i)(j - 1)(k - 1) * GL(i)(j)._2) } else { Y(i)(j)(k) = (1.0 / (2.0 * j * (2.0 * j - 1.0))) * ((2.0 * j - k) * (2.0 * j - k - 1.0) * Y(i)(j - 1)(k) * GL(i)(j)._1 + 2.0 * k * (2.0 * j - k) * Y(i)(j - 1)(k - 1) * GL(i)(j)._2 + k * (k - 1.0) * Y(i)(j - 1)(k - 2) * GL(i)(j)._2) } } } } var Yr = Array.ofDim[Double](L, M) for (l <- 0 until L) Yr(l) = Y(l)(n) return Yr } /** * Main AFS EM function * IN: Phi - an initial MAF vector of length number of SNPs * GL - Array of arrays of likelihood triples P( D | g ) * (note these are NOT multiplied by P(g | phi)! ) * OUT: Phi - ML estimate of MAF's across SNPs * Note: GL is currently an array of (numSnps) arrays of length (numInds), which is transposed */ def emForAFS(Phik: Array[Double], GL: Array[Array[(Double, Double, Double)]]): Array[Double] = { val GLt = GL.transpose val tol = 0.0001 val L = GL.length val M = Phik.length var eps = 1.0 var Y = compY(GL) var phik_updates = Phik while (eps > tol) { var sums = Array.fill(L) { 0.0 } sums.indices.foreach(a => phik_updates.indices.foreach(p => sums(a) += phik_updates(p) * Y(a)(p))) val Phik_next = Array.fill(M) { 0.0 } Phik_next.indices.foreach(i => Y.foreach(y => Phik_next(i) += (1.0 / L) * phik_updates(i) * y(i) / sums(i))) eps = 0.0 phik_updates.indices.foreach(i => eps += pow(phik_updates(i) - Phik_next(i), 2.0)) phik_updates = Phik_next } phik_updates } }
tdanford/avocado
avocado-core/src/main/scala/org/bdgenomics/avocado/algorithms/em/EMforAlleles.scala
Scala
apache-2.0
4,618
package lore.lsp import org.eclipse.lsp4j.launch.LSPLauncher object Main { def main(args: Array[String]): Unit = { val server = new LoreLanguageServer val launcher = LSPLauncher.createServerLauncher(server, System.in, System.out) val client = launcher.getRemoteProxy server.connect(client) launcher.startListening() } }
marcopennekamp/lore
lsp/server/src/lore/lsp/Main.scala
Scala
mit
349
/******************************************************************************* Copyright (c) 2013-2014, S-Core, KAIST. All rights reserved. Use is subject to license terms. This distribution may include materials developed by third parties. ******************************************************************************/ package kr.ac.kaist.jsaf.analysis.typing.models.Tizen import kr.ac.kaist.jsaf.analysis.typing.AddressManager._ import kr.ac.kaist.jsaf.analysis.typing.models._ import kr.ac.kaist.jsaf.analysis.typing._ import kr.ac.kaist.jsaf.analysis.cfg.{CFGExpr, CFG} import kr.ac.kaist.jsaf.analysis.typing.models.AbsConstValue import kr.ac.kaist.jsaf.analysis.typing.models.AbsBuiltinFunc import kr.ac.kaist.jsaf.analysis.typing.domain.{BoolFalse => F, BoolTrue => T, _} object TIZENBluetoothSocket extends Tizen { val name = "BluetoothSocket" /* predefined locations */ val loc_proto = newSystemRecentLoc(name + "Proto") override def getInitList(): List[(Loc, List[(String, AbsProperty)])] = List( (loc_proto, prop_proto) ) /* prototype */ private val prop_proto: List[(String, AbsProperty)] = List( ("@class", AbsConstValue(PropValue(AbsString.alpha("CallbackObject")))), ("@proto", AbsConstValue(PropValue(ObjectValue(Value(ObjProtoLoc), F, F, F)))), ("@extensible", AbsConstValue(PropValue(T))), ("writeData", AbsBuiltinFunc("tizen.BluetoothSocket.writeData", 1)), ("readData", AbsBuiltinFunc("tizen.BluetoothSocket.readData", 0)), ("close", AbsBuiltinFunc("tizen.BluetoothSocket.close", 0)) ) override def getSemanticMap(): Map[String, SemanticFun] = { Map( ("tizen.BluetoothSocket.writeData" -> ( (sem: Semantics, h: Heap, ctx: Context, he: Heap, ctxe: Context, cp: ControlPoint, cfg: CFG, fun: String, args: CFGExpr) => { val data = getArgValue(h, ctx, args, "0") val es_ = data._2.foldLeft(TizenHelper.TizenExceptionBot)((_es, ll) => { val n_length = Operator.ToUInt32(Helper.Proto(h, ll, AbsString.alpha("length"))) val ess = n_length.getAbsCase match { case AbsBot => TizenHelper.TizenExceptionBot case _ => AbsNumber.getUIntSingle(n_length) match { case Some(n) => { val es__ = (0 until n.toInt).foldLeft(TizenHelper.TizenExceptionBot)((_e, i) => { val vi = Helper.Proto(h, ll, AbsString.alpha(i.toString)) val esi = if (vi._1._4 </ NumTop) Set[WebAPIException](TypeMismatchError) else TizenHelper.TizenExceptionBot _e ++ esi }) es__ } case _ => { val vi = Helper.Proto(h, ll, AbsString.alpha(Str_default_number)) val esi = if (vi._1._4 </ NumTop) Set[WebAPIException](TypeMismatchError) else TizenHelper.TizenExceptionBot esi } } } _es ++ ess }) val est = Set[WebAPIException](UnknownError, SecurityError, NotSupportedError) val (h_e, ctx_e) = TizenHelper.TizenRaiseException(h, ctx, es_ ++ est) ((Helper.ReturnStore(h, Value(UInt)), ctx), (he + h_e, ctxe + ctx_e)) } )), ("tizen.BluetoothSocket.readData" -> ( (sem: Semantics, h: Heap, ctx: Context, he: Heap, ctxe: Context, cp: ControlPoint, cfg: CFG, fun: String, args: CFGExpr) => { val est = Set[WebAPIException](UnknownError, SecurityError, NotSupportedError) val (h_e, ctx_e) = TizenHelper.TizenRaiseException(h, ctx, est) ((Helper.ReturnStore(h, Value(TIZENbluetooth.loc_shortarr)), ctx), (he + h_e, ctxe + ctx_e)) } )), ("tizen.BluetoothSocket.close" -> ( (sem: Semantics, h: Heap, ctx: Context, he: Heap, ctxe: Context, cp: ControlPoint, cfg: CFG, fun: String, args: CFGExpr) => { val lset_this = h(SinglePureLocalLoc)("@this")._2._2 val h_1 = lset_this.foldLeft(h)((_h, l) => { Helper.PropStore(_h, l, AbsString.alpha("state"), Value(AbsString.alpha("CLOSED"))) }) val h_2 = lset_this.foldLeft(h_1)((_h, l) => { Helper.PropStore(_h, l, AbsString.alpha("peer"), Value(NullTop)) }) val h_3 = lset_this.foldLeft(h_2)((_h, l) => { val v1 = Helper.Proto(_h, l, AbsString.alpha("onclose")) v1._2.foldLeft(_h)((__h, l) => { if (Helper.IsCallable(__h, l) <= T) TizenHelper.addCallbackHandler(__h, AbsString.alpha("successCB"), Value(v1._2), Value(UndefTop)) else __h }) }) val est = Set[WebAPIException](UnknownError, SecurityError) val (h_e, ctx_e) = TizenHelper.TizenRaiseException(h, ctx, est) ((h_3, ctx), (he + h_e, ctxe + ctx_e)) } )) ) } override def getPreSemanticMap(): Map[String, SemanticFun] = { Map() } override def getDefMap(): Map[String, AccessFun] = { Map() } override def getUseMap(): Map[String, AccessFun] = { Map() } }
darkrsw/safe
src/main/scala/kr/ac/kaist/jsaf/analysis/typing/models/Tizen/TIZENBluetoothSocket.scala
Scala
bsd-3-clause
5,229
package im.actor.server.db import java.sql.Connection import javax.sql.DataSource import org.flywaydb.core.Flyway import org.flywaydb.core.api.MigrationInfo import org.flywaydb.core.api.callback.FlywayCallback trait FlywayInit { def initFlyway(ds: DataSource) = { val flyway = new Flyway() flyway.setDataSource(ds) flyway.setLocations("sql.migration") flyway.setCallbacks(new BeforeCleanCallback()) flyway.setBaselineOnMigrate(true) flyway } } class BeforeCleanCallback extends FlywayCallback { def afterBaseline(connection: Connection): Unit = {} def afterClean(connection: Connection): Unit = {} def afterEachMigrate(connection: Connection): Unit = {} def afterInfo(connection: Connection): Unit = {} def afterEachMigrate(connection: Connection, migrationInfo: MigrationInfo): Unit = {} def afterMigrate(connection: Connection): Unit = {} def afterRepair(connection: Connection): Unit = {} def afterValidate(connection: Connection): Unit = {} def beforeBaseline(connection: Connection): Unit = {} def beforeClean(connection: Connection): Unit = executeStmt(connection, """DROP EXTENSION IF EXISTS "ltree" CASCADE;""") def beforeEachMigrate(connection: Connection, migrationInfo: MigrationInfo): Unit = {} def beforeInfo(connection: Connection): Unit = {} def beforeInit(connection: Connection): Unit = {} def beforeMigrate(connection: Connection): Unit = {} def beforeRepair(connection: Connection): Unit = {} def beforeValidate(connection: Connection): Unit = {} def afterInit(connection: Connection): Unit = executeStmt(connection, """DROP EXTENSION IF EXISTS "ltree" CASCADE;""") def executeStmt(connection: Connection, statement: String): Unit = { if (connection.getMetaData().getDriverName().startsWith("PostgreSQL")) { val stmt = connection.prepareStatement(statement) try { stmt.execute() } finally { stmt.close() } } } }
EaglesoftZJ/actor-platform
actor-server/actor-persist/src/main/scala/im/actor/server/db/FlywayInit.scala
Scala
agpl-3.0
1,950
import scuff.FakeType package object delta { type Revision = Int // >= 0 type Tick = Long type Channel = Channel.Type val Channel: FakeType[String] { type Type <: AnyRef } = new FakeType[String] { type Type = String def apply(str: String) = str } }
nilskp/delta
src/main/scala/delta/package.scala
Scala
mit
271
/* * Copyright (c) 2014-2018 by The Monix Project Developers. * See the project homepage at: https://monix.io * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package monix.eval import monix.catnap.CancelableF import monix.catnap.cancelables.BooleanCancelableF import monix.execution.cancelables.BooleanCancelable import monix.eval.internal.TaskConnectionRef import monix.execution.ExecutionModel.SynchronousExecution object TaskConnectionRefSuite extends BaseTestSuite { test("assign and cancel a Cancelable") { implicit s => var effect = 0 val cr = TaskConnectionRef() val b = BooleanCancelable { () => effect += 1 } cr := b assert(!b.isCanceled, "!b.isCanceled") cr.cancel.runAsyncAndForget; s.tick() assert(b.isCanceled, "b.isCanceled") assert(effect == 1) cr.cancel.runAsyncAndForget; s.tick() assert(effect == 1) } test("assign and cancel a CancelableF") { implicit s => var effect = 0 val cr = TaskConnectionRef() val b = CancelableF.wrap(Task { effect += 1 }) cr := b assertEquals(effect, 0) cr.cancel.runAsyncAndForget; s.tick() assert(effect == 1) } test("assign and cancel a CancelToken[Task]") { implicit s => var effect = 0 val cr = TaskConnectionRef() val b = Task { effect += 1 } cr := b assertEquals(effect, 0) cr.cancel.runAsyncAndForget; s.tick() assertEquals(effect, 1) cr.cancel.runAsyncAndForget; s.tick() assertEquals(effect, 1) } test("cancel a Cancelable on single assignment") { implicit s => val cr = TaskConnectionRef() cr.cancel.runAsyncAndForget; s.tick() var effect = 0 val b = BooleanCancelable { () => effect += 1 } cr := b assert(b.isCanceled) assertEquals(effect, 1) cr.cancel.runAsyncAndForget; s.tick() assertEquals(effect, 1) val b2 = BooleanCancelable { () => effect += 1 } intercept[IllegalStateException] { cr := b2 } assertEquals(effect, 2) } test("cancel a CancelableF on single assignment") { scheduler => implicit val s = scheduler.withExecutionModel(SynchronousExecution) val cr = TaskConnectionRef() cr.cancel.runAsyncAndForget; s.tick() var effect = 0 val b = BooleanCancelableF(Task { effect += 1 }).runToFuture.value.get.get cr := b assert(b.isCanceled.runToFuture.value.get.get) assertEquals(effect, 1) cr.cancel.runAsyncAndForget; s.tick() assertEquals(effect, 1) val b2 = BooleanCancelableF(Task { effect += 1 }).runToFuture.value.get.get intercept[IllegalStateException] { cr := b2 } assertEquals(effect, 2) } test("cancel a Task on single assignment") { implicit s => val cr = TaskConnectionRef() cr.cancel.runAsyncAndForget; s.tick() var effect = 0 val b = Task { effect += 1 } cr := b; s.tick() assertEquals(effect, 1) cr.cancel.runAsyncAndForget; s.tick() assertEquals(effect, 1) intercept[IllegalStateException] { cr := b } assertEquals(effect, 2) } }
Wogan/monix
monix-eval/shared/src/test/scala/monix/eval/TaskConnectionRefSuite.scala
Scala
apache-2.0
3,532
package rx.lang.scala import org.junit.Test import org.scalatestplus.junit.JUnitSuite import rx.lang.scala.observers.TestSubscriber import scala.concurrent.Future import scala.util.{Failure, Success} class ScalaTypesConversionsTests extends JUnitSuite { @Test def testIterableConversion() = { val it = Seq("1", "2", "3") val observer = TestSubscriber[String]() it.toObservable.subscribe(observer) observer.assertValues("1", "2", "3") observer.assertNoErrors() observer.assertCompleted() } @Test def testIterableEmptyConversion() = { val it = List[String]() val observer = TestSubscriber[String]() it.toObservable.subscribe(observer) observer.assertNoValues() observer.assertNoErrors() observer.assertCompleted() } @Test def testTrySuccessConversion() = { val success = Success("abc") val observer = TestSubscriber[String]() success.toObservable.subscribe(observer) observer.assertValue("abc") observer.assertNoErrors() observer.assertCompleted() } @Test def testTryFailureConversion() = { val error = new IllegalArgumentException("test error") val failure = Failure[String](error) val observer = TestSubscriber[String]() failure.toObservable.subscribe(observer) observer.assertNoValues() observer.assertError(error) observer.assertNotCompleted() } @Test def testOptionSomeConversion() = { val some = Option("abc") val observer = TestSubscriber[String]() some.toObservable.subscribe(observer) observer.assertValue("abc") observer.assertNoErrors() observer.assertCompleted() } @Test def testOptionNoneConversion() = { val some = Option.empty[String] val observer = TestSubscriber[String]() some.toObservable.subscribe(observer) observer.assertNoValues() observer.assertNoErrors() observer.assertCompleted() } @Test def testFutureSuccessfulConversion() = { import scala.concurrent.ExecutionContext.Implicits.global val fut = Future.successful("abc") val observer = TestSubscriber[String]() fut.toObservable.subscribe(observer) observer.awaitTerminalEvent() observer.assertValue("abc") observer.assertNoErrors() observer.assertCompleted() } @Test def testFutureSuccessfulConversion2() = { import scala.concurrent.ExecutionContext.Implicits.global val fut = Future { "abc" } val observer = TestSubscriber[String]() fut.toObservable.subscribe(observer) observer.awaitTerminalEvent() observer.assertValue("abc") observer.assertNoErrors() observer.assertCompleted() } @Test def testFutureFailedConversion() = { import scala.concurrent.ExecutionContext.Implicits.global val error = new IllegalArgumentException("test error") val fut = Future.failed[Unit](error) val observer = TestSubscriber[Unit]() fut.toObservable.subscribe(observer) observer.awaitTerminalEvent() observer.assertNoValues() observer.assertError(error) observer.assertNotCompleted() } }
ReactiveX/RxScala
src/test/scala/rx/lang/scala/ScalaTypesConversionsTests.scala
Scala
apache-2.0
3,069
package unitspec import org.scalatest._ abstract class UnitSpec extends FlatSpec with Matchers with OptionValues with Inside with Inspectors
mvogiatzis/freq-count
src/test/scala/unitspec/UnitSpec.scala
Scala
mit
142
/* Copyright 2013 Twitter, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package com.twitter.summingbird.scalding.batch import com.twitter.summingbird.batch.{ BatchID, Batcher } import com.twitter.algebird.{ Universe, Empty, Interval, Intersection, InclusiveLower, ExclusiveUpper, InclusiveUpper } import com.twitter.bijection.{ Injection, Bijection, Conversion } import com.twitter.summingbird.batch.Timestamp import com.twitter.summingbird.scalding._ import com.twitter.scalding.Mode import Conversion.asMethod /** * Services and Stores are very similar, but not exact. * This shares the logic for them. */ private class BatchedOperations(batcher: Batcher) { def coverIt[T](timeSpan: Interval[Timestamp]): Iterable[BatchID] = { val batchInterval = batcher.cover(timeSpan.as[Interval[Timestamp]]) BatchID.toIterable(batchInterval) } def batchToTimestamp(bint: Interval[BatchID]): Interval[Timestamp] = bint.mapNonDecreasing { batcher.earliestTimeOf(_) } def intersect(batches: Interval[BatchID], ts: Interval[Timestamp]): Interval[Timestamp] = batchToTimestamp(batches) && ts def intersect(batches: Iterable[BatchID], ts: Interval[Timestamp]): Option[Interval[Timestamp]] = BatchID.toInterval(batches).map { intersect(_, ts) } def readBatched[T](inBatches: Interval[BatchID], mode: Mode, in: PipeFactory[T]): Try[(Interval[BatchID], FlowToPipe[T])] = { val inTimes = batchToTimestamp(inBatches) // Read the delta stream for the needed times in((inTimes, mode)) .right .map { case ((availableInput, innerm), f2p) => val batchesWeCanBuild = batcher.batchesCoveredBy(availableInput.as[Interval[Timestamp]]) (batchesWeCanBuild, f2p) } } }
zirpins/summingbird
summingbird-scalding/src/main/scala/com/twitter/summingbird/scalding/batch/BatchedOperations.scala
Scala
apache-2.0
2,234
/* Title: Pure/Admin/jenkins.scala Author: Makarius Support for Jenkins continuous integration service. */ package isabelle import java.net.URL import scala.util.matching.Regex object Jenkins { /* server API */ def root(): String = Isabelle_System.getenv_strict("ISABELLE_JENKINS_ROOT") def invoke(url: String, args: String*): Any = { val req = url + "/api/json?" + args.mkString("&") val result = Url.read(req) try { JSON.parse(result) } catch { case ERROR(_) => error("Malformed JSON from " + quote(req)) } } /* build jobs */ def build_job_names(): List[String] = for { job <- JSON.array(invoke(root()), "jobs").getOrElse(Nil) _class <- JSON.string(job, "_class") if _class == "hudson.model.FreeStyleProject" name <- JSON.string(job, "name") } yield name def download_logs( options: Options, job_names: List[String], dir: Path, progress: Progress = No_Progress) { val store = Sessions.store(options) val infos = job_names.flatMap(build_job_infos(_)) Par_List.map((info: Job_Info) => info.download_log(store, dir, progress), infos) } /* build log status */ val build_log_jobs = List("isabelle-nightly-benchmark", "isabelle-nightly-slow") val build_status_profiles: List[Build_Status.Profile] = build_log_jobs.map(job_name => Build_Status.Profile("jenkins " + job_name, sql = Build_Log.Prop.build_engine + " = " + SQL.string(Build_Log.Jenkins.engine) + " AND " + Build_Log.Data.session_name + " <> " + SQL.string("Pure") + " AND " + Build_Log.Data.status + " = " + SQL.string(Build_Log.Session_Status.finished.toString) + " AND " + Build_Log.Data.log_name + " LIKE " + SQL.string("%" + job_name))) /* job info */ sealed case class Job_Info( job_name: String, timestamp: Long, main_log: URL, session_logs: List[(String, String, URL)]) { val date: Date = Date(Time.ms(timestamp), Date.timezone_berlin) def log_filename: Path = Build_Log.log_filename(Build_Log.Jenkins.engine, date, List(job_name)) def read_ml_statistics(store: Sessions.Store, session_name: String): List[Properties.T] = { def get_log(ext: String): Option[URL] = session_logs.collectFirst({ case (a, b, url) if a == session_name && b == ext => url }) get_log("db") match { case Some(url) => Isabelle_System.with_tmp_file(session_name, "db") { database => Bytes.write(database, Bytes.read(url)) using(SQLite.open_database(database))(db => store.read_ml_statistics(db, session_name)) } case None => get_log("gz") match { case Some(url) => val log_file = Build_Log.Log_File(session_name, Url.read_gzip(url)) log_file.parse_session_info(ml_statistics = true).ml_statistics case None => Nil } } } def download_log(store: Sessions.Store, dir: Path, progress: Progress = No_Progress) { val log_dir = dir + Build_Log.log_subdir(date) val log_path = log_dir + log_filename.ext("xz") if (!log_path.is_file) { progress.echo(log_path.expand.implode) Isabelle_System.mkdirs(log_dir) val ml_statistics = session_logs.map(_._1).toSet.toList.sorted.flatMap(session_name => read_ml_statistics(store, session_name). map(props => (Build_Log.SESSION_NAME -> session_name) :: props)) File.write_xz(log_path, terminate_lines(Url.read(main_log) :: ml_statistics.map(Build_Log.Log_File.print_props(Build_Log.ML_STATISTICS_MARKER, _))), XZ.options(6)) } } } def build_job_infos(job_name: String): List[Job_Info] = { val Session_Log = new Regex("""^.*/log/([^/]+)\.(db|gz)$""") val infos = for { build <- JSON.array( invoke(root() + "/job/" + job_name, "tree=allBuilds[number,timestamp,artifacts[*]]"), "allBuilds").getOrElse(Nil) number <- JSON.int(build, "number") timestamp <- JSON.long(build, "timestamp") } yield { val job_prefix = root() + "/job/" + job_name + "/" + number val main_log = Url(job_prefix + "/consoleText") val session_logs = for { artifact <- JSON.array(build, "artifacts").getOrElse(Nil) log_path <- JSON.string(artifact, "relativePath") (name, ext) <- (log_path match { case Session_Log(a, b) => Some((a, b)) case _ => None }) } yield (name, ext, Url(job_prefix + "/artifact/" + log_path)) Job_Info(job_name, timestamp, main_log, session_logs) } infos.sortBy(info => - info.timestamp) } }
larsrh/libisabelle
modules/pide/2019-RC4/src/main/scala/Admin/jenkins.scala
Scala
apache-2.0
4,775
package org.concurrency.ch5 import scala.collection.parallel.Combiner import scala.collection.mutable.ArrayBuffer import scala.collection.parallel.mutable.ParArray class ParStringCombiner extends Combiner[Char, ParString] { private val chunks = new ArrayBuffer += new StringBuilder private var sz = 0 private var lastc = chunks.last override def size:Int = sz override def += (elem: Char) = { lastc += elem sz += 1 this } override def clear(): Unit = { chunks.clear() chunks += new StringBuilder lastc = chunks.last sz = 0 } override def combine[U <: Char, NewTo >: ParString](that: Combiner[U, NewTo]):Combiner[U, NewTo] = { if(this eq that) this else that match { case that: ParStringCombiner => sz += that.size chunks ++= that.chunks lastc = chunks.last this } } override def result(): ParString = { // //try #1 'manual' pallelizing // //worst performant of the three // // val resArr = new Array[Char](this.size) // val accSz = new ArrayBuffer[Int] // // //calculate accumulate lengths so that I can concat chars in parallel afterwards // var tmpSz = 0 // accSz += 0 // for(sb <- chunks) { // accSz += sb.length + tmpSz // tmpSz += sb.length // } // // for (i <- chunks.indices.par) { // val sb = chunks(i) // val shift = accSz(i) // for(j <- sb.indices) resArr(shift + j) = sb(j) // } // // new ParString(resArr.mkString) // // try #2 String aggregate // new ParString(chunks.par.aggregate("") ( // (acc, line) => acc + line, // (acc1, acc2) => acc1 + acc2 // )) // // try #3 StringBuilder aggregate // new ParString(chunks.par.aggregate(new StringBuilder) ( // (acc,line) => acc.append(line), // (acc1, acc2) => acc1.append(acc2) // ).toString()) // try #4 sequential result val rsb = new StringBuilder for(sb <- chunks) rsb.append(sb) new ParString(rsb.toString()) } } object ParStringCombinerApp extends App { val valpartxt = new ParString("Get rid of those superfluous whitespaces, please" * 3) println(valpartxt.filter(_ != ' ')); val txt = "A custom txt" * 25000 val partxt = new ParString(txt) val seqtime = Timer.warmedTimed(250,2) {txt.filter(_ != ' ')} val partime = Timer.warmedTimed(250,2) {partxt.filter(_ != ' ')} println(s"seq: $seqtime ms") println(s"par: $partime ms") }
marcos-sb/concurrent-programming-scala
src/main/scala-2.11/org/concurrency/ch5/ParStringCombiner.scala
Scala
apache-2.0
2,471
package org.brzy.validator.constraints import org.scalatest.WordSpec import org.scalatest.matchers.ShouldMatchers class PatternSpec extends WordSpec with ShouldMatchers { "Pattern validator" should { "validate" in { val pattern = Pattern("hello") assert(pattern.isValid("hello you")) } "not validate" in { val pattern = Pattern("hello") assert(!pattern.isValid(" world")) } } }
m410/brzy
src/test/scala/org/brzy/validator/constraints/PatternSpec.scala
Scala
apache-2.0
426
package fr.acinq.eclair.blockchain import akka.actor.ActorRef import fr.acinq.bitcoin.Crypto.PublicKey import fr.acinq.bitcoin.{ByteVector32, Script, ScriptWitness, Transaction} import fr.acinq.eclair.channel.BitcoinEvent import scodec.bits.ByteVector import scala.util.{Success, Try} sealed trait Watch { def replyTo: ActorRef def event: BitcoinEvent } final case class WatchConfirmed(replyTo: ActorRef, txId: ByteVector32, publicKeyScript: ByteVector, minDepth: Long, event: BitcoinEvent) extends Watch object WatchConfirmed { // if we have the entire transaction, we can get the publicKeyScript from any of the outputs def apply(replyTo: ActorRef, tx: Transaction, event: BitcoinEvent, minDepth: Long): WatchConfirmed = WatchConfirmed(replyTo, tx.txid, tx.txOut.map(_.publicKeyScript).headOption.getOrElse(ByteVector.empty), minDepth, event) def extractPublicKeyScript(witness: ScriptWitness): ByteVector = Try(PublicKey fromBin witness.stack.last) match { case Success(pubKey) => Script.write(Script pay2wpkh pubKey) // if last element of the witness is a public key, then this is a p2wpkh case _ => Script.write(Script pay2wsh witness.stack.last) // otherwise this is a p2wsh } } final case class WatchSpent(replyTo: ActorRef, txId: ByteVector32, outputIndex: Int, publicKeyScript: ByteVector, event: BitcoinEvent, hints: Set[ByteVector32] = Set.empty) extends Watch object WatchSpent { // if we have the entire transaction, we can get the publicKeyScript from the relevant output def apply(replyTo: ActorRef, tx: Transaction, outputIndex: Int, event: BitcoinEvent): WatchSpent = WatchSpent(replyTo, tx.txid, outputIndex, tx.txOut(outputIndex).publicKeyScript, event) } trait WatchEvent { def event: BitcoinEvent } final case class TxConfirmedAt(blockHeight: Int, tx: Transaction) final case class WatchEventConfirmed(event: BitcoinEvent, txConfirmedAt: TxConfirmedAt, txIndex: Int) extends WatchEvent final case class WatchEventSpent(event: BitcoinEvent, tx: Transaction) extends WatchEvent final case class PublishAsap(tx: Transaction) final case class GetTxWithMeta(txid: ByteVector32) final case class GetTxWithMetaResponse(txid: ByteVector32, tx_opt: Option[Transaction], lastBlockTimestamp: Long)
btcontract/wallet
app/src/main/java/fr/acinq/eclair/blockchain/WatcherTypes.scala
Scala
apache-2.0
2,257
package com.karasiq.shadowcloud.serialization.kryo import com.esotericsoftware.kryo.Kryo import com.esotericsoftware.kryo.io.{Input, Output} import com.twitter.chill import com.karasiq.shadowcloud.model.Timestamp private[kryo] final class TimestampSerializer extends chill.KSerializer[Timestamp](false, true) { def read(kryo: Kryo, input: Input, `type`: Class[Timestamp]): Timestamp = { val created = input.readLong(true) val modifiedOffset = input.readLong(true) Timestamp(created, created + modifiedOffset) } def write(kryo: Kryo, output: Output, timestamp: Timestamp): Unit = { val modifiedOffset = timestamp.lastModified - timestamp.created // math.max(0L, timestamp.lastModified - timestamp.created) output.writeLong(timestamp.created, true) output.writeLong(modifiedOffset, true) } }
Karasiq/shadowcloud
serialization/.jvm/src/main/scala/com/karasiq/shadowcloud/serialization/kryo/TimestampSerializer.scala
Scala
apache-2.0
825
package com.programmaticallyspeaking.ncd.nashorn import com.programmaticallyspeaking.ncd.host.ValueNode import com.sun.jdi._ /** * Represents an object that doesn't exist in the remote VM. */ class LocalObject(val values: Map[String, ValueNode]) extends Value { override def `type`(): Type = notSupported override def virtualMachine(): VirtualMachine = notSupported private def notSupported[R] = throw new UnsupportedOperationException("LocalObject") }
provegard/ncdbg
src/main/scala/com/programmaticallyspeaking/ncd/nashorn/LocalObject.scala
Scala
bsd-3-clause
465
package net.liftweb.markdown /* * Copyright 2013 WorldWide Conferencing, LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Based on https://github.com/chenkelmann/actuarius originally developed by * Christoph Henkelmann http://henkelmann.eu/ */ import org.scalatest.junit.JUnitRunner import org.scalatest.FlatSpec import org.scalatest.matchers.ShouldMatchers import collection.SortedMap import org.junit.runner.RunWith /** * Tests basic parsers that are used by the more complex parsing steps. */ @RunWith(classOf[JUnitRunner]) class BaseParsersTest extends FlatSpec with ShouldMatchers with BaseParsers{ "The BaseParsers" should "parse a newline" in { val p = nl apply(p, "\n") should equal ("\n") evaluating(apply(p, "\r\n")) should produce[IllegalArgumentException] evaluating(apply(p, " \n")) should produce[IllegalArgumentException] } it should "parse whitespace" in { val p = ws apply(p, " ") should equal (" ") apply(p, "\t") should equal ("\t") apply(p, " ") should equal (" ") apply(p, "\t\t") should equal ("\t\t") apply(p, " \t \t ") should equal (" \t \t ") //we want newlines to be treated diferrently from other ws evaluating (apply(p, "\n")) should produce[IllegalArgumentException] } it should "be able to look behind" in { apply (((elem('a') ~ lookbehind(Set('a')) ~ elem('b'))^^{case a~lb~b=>a+""+b}), "ab") should equal ("ab") evaluating {apply (((elem('a') ~ lookbehind(Set('b')) ~ elem('b'))^^{case a~b=>a+""+b}), "ab")} should produce[IllegalArgumentException] apply( (elem('a') ~ not(lookbehind(Set(' ', '\t', '\n'))) ~ '*' ), "a*" ) } it should "parse chars in ranges" in { val p = ranges(SortedMap('A' -> 'Z', '0' -> '9')) apply(p, "B") should equal ('B') apply(p, "A") should equal ('A') apply(p, "Z") should equal ('Z') apply(p, "5") should equal ('5') apply(p, "0") should equal ('0') apply(p, "9") should equal ('9') evaluating (apply(p, "a")) should produce[IllegalArgumentException] evaluating (apply(p, "z")) should produce[IllegalArgumentException] evaluating (apply(p, "<")) should produce[IllegalArgumentException] } }
lzpfmh/framework-2
core/markdown/src/test/scala/net/liftweb/markdown/BaseParsersTest.scala
Scala
apache-2.0
2,833
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.ml.recommendation import java.io.File import java.util.Random import scala.collection.mutable import scala.collection.mutable.ArrayBuffer import scala.language.existentials import com.github.fommil.netlib.BLAS.{getInstance => blas} import org.apache.spark.{Logging, SparkException, SparkFunSuite} import org.apache.spark.ml.recommendation.ALS._ import org.apache.spark.ml.util.MLTestingUtils import org.apache.spark.mllib.linalg.Vectors import org.apache.spark.mllib.util.MLlibTestSparkContext import org.apache.spark.mllib.util.TestingUtils._ import org.apache.spark.rdd.RDD import org.apache.spark.sql.{Row, SQLContext} import org.apache.spark.util.Utils /** * 参考文档http://blog.csdn.net/liulingyuan6/article/details/53489390 * 协同过滤常被用于推荐系统, * Spark.ml目前支持基于模型的协同过滤,其中用户和商品以少量的潜在因子来描述,用以预测缺失项 * 注意基于DataFrame的ALS接口目前仅支持整数型的用户和商品编号 * 正则化参数regParam来解决用户在更新用户因子时产生新评分或者商品更新商品因子时收到的新评分带来的最小二乘问题 * 矩阵分解:将用户(user)对商品(item)的评分矩阵分解为两个矩阵:一个是用户对商品隐含特征的偏好矩阵,另一个是商品所包含的隐含特征的矩阵。 * 在这个矩阵分解的过程中,评分缺失项得到了填充,也就是说我们可以基于这个填充的评分来给用户最商品推荐了 * */ class ALSSuite extends SparkFunSuite with MLlibTestSparkContext with Logging { private var tempDir: File = _ override def beforeAll(): Unit = { super.beforeAll() tempDir = Utils.createTempDir() sc.setCheckpointDir(tempDir.getAbsolutePath) } override def afterAll(): Unit = { Utils.deleteRecursively(tempDir) super.afterAll() } test("LocalIndexEncoder") {//本地索引编码 val random = new Random for (numBlocks <- Seq(1, 2, 5, 10, 20, 50, 100)) { val encoder = new LocalIndexEncoder(numBlocks) val maxLocalIndex = Int.MaxValue / numBlocks val tests = Seq.fill(5)((random.nextInt(numBlocks), random.nextInt(maxLocalIndex))) ++ Seq((0, 0), (numBlocks - 1, maxLocalIndex)) tests.foreach { case (blockId, localIndex) => val err = s"Failed with numBlocks=$numBlocks, blockId=$blockId, and localIndex=$localIndex." val encoded = encoder.encode(blockId, localIndex) assert(encoder.blockId(encoded) === blockId, err) assert(encoder.localIndex(encoded) === localIndex, err) } } } test("normal equation construction") {//标准相等的构建 //线性回归 val k = 2 //NormalEquation 标准方程 val ne0 = new NormalEquation(k).add(Array(1.0f, 2.0f), 3.0).add(Array(4.0f, 5.0f), 6.0, 2.0) // weighted assert(ne0.k === k) assert(ne0.triK === k * (k + 1) / 2) // NumPy code that computes the expected values: // A = np.matrix("1 2; 4 5") // b = np.matrix("3; 6") // C = np.matrix(np.diag([1, 2])) // ata = A.transpose() * C * A // atb = A.transpose() * C * b assert(Vectors.dense(ne0.ata) ~== Vectors.dense(33.0, 42.0, 54.0) relTol 1e-8) assert(Vectors.dense(ne0.atb) ~== Vectors.dense(51.0, 66.0) relTol 1e-8) val ne1 = new NormalEquation(2) .add(Array(7.0f, 8.0f), 9.0) ne0.merge(ne1) // NumPy code that computes the expected values: // A = np.matrix("1 2; 4 5; 7 8") // b = np.matrix("3; 6; 9") // C = np.matrix(np.diag([1, 2, 1])) // ata = A.transpose() * C * A // atb = A.transpose() * C * b assert(Vectors.dense(ne0.ata) ~== Vectors.dense(82.0, 98.0, 118.0) relTol 1e-8) assert(Vectors.dense(ne0.atb) ~== Vectors.dense(114.0, 138.0) relTol 1e-8) intercept[IllegalArgumentException] { ne0.add(Array(1.0f), 2.0) } intercept[IllegalArgumentException] { ne0.add(Array(1.0f, 2.0f, 3.0f), 4.0) } intercept[IllegalArgumentException] { ne0.add(Array(1.0f, 2.0f), 0.0, -1.0) } intercept[IllegalArgumentException] { val ne2 = new NormalEquation(3) ne0.merge(ne2) } ne0.reset() assert(ne0.ata.forall(_ == 0.0)) assert(ne0.atb.forall(_ == 0.0)) } //Cholesky 分解是把一个对称正定的矩阵表示成一个下三角矩阵L和其转置的乘积的分解 test("CholeskySolver") { val k = 2 val ne0 = new NormalEquation(k) .add(Array(1.0f, 2.0f), 4.0) .add(Array(1.0f, 3.0f), 9.0) .add(Array(1.0f, 4.0f), 16.0) val ne1 = new NormalEquation(k) .merge(ne0) val chol = new CholeskySolver val x0 = chol.solve(ne0, 0.0).map(_.toDouble) // NumPy code that computes the expected solution: // A = np.matrix("1 2; 1 3; 1 4") // b = b = np.matrix("3; 6") // x0 = np.linalg.lstsq(A, b)[0] assert(Vectors.dense(x0) ~== Vectors.dense(-8.333333, 6.0) relTol 1e-6) assert(ne0.ata.forall(_ == 0.0)) assert(ne0.atb.forall(_ == 0.0)) val x1 = chol.solve(ne1, 1.5).map(_.toDouble) // NumPy code that computes the expected solution, where lambda is scaled by n: // x0 = np.linalg.solve(A.transpose() * A + 1.5 * np.eye(2), A.transpose() * b) assert(Vectors.dense(x1) ~== Vectors.dense(-0.1155556, 3.28) relTol 1e-6) } test("RatingBlockBuilder") {//评级模块生成器 val emptyBuilder = new RatingBlockBuilder[Int]() assert(emptyBuilder.size === 0) val emptyBlock = emptyBuilder.build() assert(emptyBlock.srcIds.isEmpty) assert(emptyBlock.dstIds.isEmpty) assert(emptyBlock.ratings.isEmpty) val builder0 = new RatingBlockBuilder() .add(Rating(0, 1, 2.0f)) .add(Rating(3, 4, 5.0f)) assert(builder0.size === 2) val builder1 = new RatingBlockBuilder() .add(Rating(6, 7, 8.0f))// .merge(builder0.build()) assert(builder1.size === 3)//合并 val block = builder1.build() val ratings = Seq.tabulate(block.size) { i => (block.srcIds(i), block.dstIds(i), block.ratings(i)) }.toSet assert(ratings === Set((0, 1, 2.0f), (3, 4, 5.0f), (6, 7, 8.0f))) } test("UncompressedInBlock") {//未压缩的块 val encoder = new LocalIndexEncoder(10) val uncompressed = new UncompressedInBlockBuilder[Int](encoder) .add(0, Array(1, 0, 2), Array(0, 1, 4), Array(1.0f, 2.0f, 3.0f)) .add(1, Array(3, 0), Array(2, 5), Array(4.0f, 5.0f)) .build() assert(uncompressed.length === 5) val records = Seq.tabulate(uncompressed.length) { i => val dstEncodedIndex = uncompressed.dstEncodedIndices(i) val dstBlockId = encoder.blockId(dstEncodedIndex) val dstLocalIndex = encoder.localIndex(dstEncodedIndex) (uncompressed.srcIds(i), dstBlockId, dstLocalIndex, uncompressed.ratings(i)) }.toSet val expected = Set((1, 0, 0, 1.0f), (0, 0, 1, 2.0f), (2, 0, 4, 3.0f), (3, 1, 2, 4.0f), (0, 1, 5, 5.0f)) assert(records === expected) val compressed = uncompressed.compress() assert(compressed.size === 5) assert(compressed.srcIds.toSeq === Seq(0, 1, 2, 3)) assert(compressed.dstPtrs.toSeq === Seq(0, 2, 3, 4, 5)) var decompressed = ArrayBuffer.empty[(Int, Int, Int, Float)] var i = 0 while (i < compressed.srcIds.size) { var j = compressed.dstPtrs(i) while (j < compressed.dstPtrs(i + 1)) { val dstEncodedIndex = compressed.dstEncodedIndices(j) val dstBlockId = encoder.blockId(dstEncodedIndex) val dstLocalIndex = encoder.localIndex(dstEncodedIndex) decompressed += ((compressed.srcIds(i), dstBlockId, dstLocalIndex, compressed.ratings(j))) j += 1 } i += 1 } assert(decompressed.toSet === expected) } /** * Generates an explicit feedback dataset for testing ALS. * 生成用于测试的ALS一个明确的反馈数据 * @param numUsers number of users 用户数 * @param numItems number of items 项目数 * @param rank rank 模型中潜在的特征数 * @param noiseStd the standard deviation of additive Gaussian noise on training data * 训练数据中加性高斯噪声的标准偏差 * @param seed random seed 随机种子 * @return (training, test) */ def genExplicitTestData( numUsers: Int,//用户数目 numItems: Int,//商品数目 rank: Int,//分解矩阵的排名 noiseStd: Double = 0.0, seed: Long = 11L): (RDD[Rating[Int]], RDD[Rating[Int]]) = { val trainingFraction = 0.6 val testFraction = 0.3 val totalFraction = trainingFraction + testFraction val random = new Random(seed) //rank 在模型中潜在的特征数 val userFactors = genFactors(numUsers, rank, random) val itemFactors = genFactors(numItems, rank, random) val training = ArrayBuffer.empty[Rating[Int]] val test = ArrayBuffer.empty[Rating[Int]] for ((userId, userFactor) <- userFactors; (itemId, itemFactor) <- itemFactors) { val x = random.nextDouble() if (x < totalFraction) { val rating = blas.sdot(rank, userFactor, 1, itemFactor, 1) if (x < trainingFraction) { val noise = noiseStd * random.nextGaussian() training += Rating(userId, itemId, rating + noise.toFloat) } else { test += Rating(userId, itemId, rating) } } } logInfo(s"Generated an explicit feedback dataset with ${training.size} ratings for training " + s"and ${test.size} for test.") (sc.parallelize(training, 2), sc.parallelize(test, 2)) } /** * Generates an implicit feedback dataset for testing ALS. * 生成用于测试的ALS的隐式反馈数据 * @param numUsers number of users 用户数 * @param numItems number of items 项目数 * @param rank rank 在模型中潜在的特征数 * @param noiseStd the standard deviation of additive Gaussian noise on training data * @param seed random seed * @return (training, test) */ def genImplicitTestData( numUsers: Int, numItems: Int, rank: Int, noiseStd: Double = 0.0, seed: Long = 11L): (RDD[Rating[Int]], RDD[Rating[Int]]) = { // The assumption of the implicit feedback model is that unobserved ratings are more likely to // be negatives. //隐式反馈模型的假设是不可观测的评级更可能是消极的 val positiveFraction = 0.8 //正分数 val negativeFraction = 1.0 - positiveFraction //负分数 val trainingFraction = 0.6//训练部分 val testFraction = 0.3 //测试分数 val totalFraction = trainingFraction + testFraction val random = new Random(seed) //rank 在模型中潜在的特征数 val userFactors = genFactors(numUsers, rank, random) val itemFactors = genFactors(numItems, rank, random) val training = ArrayBuffer.empty[Rating[Int]] val test = ArrayBuffer.empty[Rating[Int]] for ((userId, userFactor) <- userFactors; (itemId, itemFactor) <- itemFactors) { val rating = blas.sdot(rank, userFactor, 1, itemFactor, 1) //在二进制分类中设置阈值,范围为[0,1],如果类标签1的估计概率>Threshold,则预测1,否则0 val threshold = if (rating > 0) positiveFraction else negativeFraction val observed = random.nextDouble() < threshold if (observed) { val x = random.nextDouble() if (x < totalFraction) { if (x < trainingFraction) { val noise = noiseStd * random.nextGaussian() training += Rating(userId, itemId, rating + noise.toFloat) } else { test += Rating(userId, itemId, rating) } } } } logInfo(s"Generated an implicit feedback dataset with ${training.size} ratings for training " + s"and ${test.size} for test.") (sc.parallelize(training, 2), sc.parallelize(test, 2)) } /** * Generates random user/item factors, with i.i.d. values drawn from U(a, b). * 产生随机的用户/项目因素 * @param size number of users/items 用户/项目数 * @param rank number of features 模型中潜在的特征数 * @param random random number generator 随机数发生器 * @param a min value of the support (default: -1) * @param b max value of the support (default: 1) * @return a sequence of (ID, factors) pairs */ private def genFactors( size: Int, rank: Int, random: Random, a: Float = -1.0f, b: Float = 1.0f): Seq[(Int, Array[Float])] = { require(size > 0 && size < Int.MaxValue / 3) require(b > a) val ids = mutable.Set.empty[Int] while (ids.size < size) { ids += random.nextInt() } val width = b - a ids.toSeq.sorted.map(id => (id, Array.fill(rank)(a + random.nextFloat() * width))) } /** * Test ALS using the given training/test splits and parameters. * @param training training dataset * @param test test dataset * @param rank rank of the matrix factorization 矩阵分解中的特征数 * @param maxIter max number of iterations * @param regParam regularization constant * @param implicitPrefs whether to use implicit preference * @param numUserBlocks number of user blocks * @param numItemBlocks number of item blocks * @param targetRMSE target test RMSE */ def testALS( training: RDD[Rating[Int]], test: RDD[Rating[Int]], rank: Int,//模型中潜在因素的数量 maxIter: Int,//迭代次数 regParam: Double,//正则化参数>=0 implicitPrefs: Boolean = false,//制定是否使用显示反馈ALS变体(或者说是对隐式反馈数据的一种适应) numUserBlocks: Int = 2,//设置用户数据块的个数和并行度 numItemBlocks: Int = 3,//设置物品数据块个数和并行度 targetRMSE: Double = 0.05): Unit = { val sqlContext = this.sqlContext import sqlContext.implicits._ val als = new ALS() .setRank(rank)//是模型中隐语义因子的个数,分解矩阵的排名 .setRegParam(regParam)//正则化参数 .setImplicitPrefs(implicitPrefs)//决定了是用显性反馈ALS的版本还是用适用隐性反馈数据集的版本 .setNumUserBlocks(numUserBlocks)//用户数目(正数) .setNumItemBlocks(numItemBlocks)//商品数目(正数) .setSeed(0) //随机种子 //可以调整这些参数,不断优化结果,使均方差变小。比如:iterations越多,lambda较小,均方差会较小,推荐结果较优。 val alpha = als.getAlpha //是一个针对于隐性反馈 ALS 版本的参数,这个参数决定了偏好行为强度的基准 //fit()方法将DataFrame转化为一个Transformer的算法 val model = als.fit(training.toDF()) //transform()方法将DataFrame转化为另外一个DataFrame的算法 /** *+-----------+----------+------------+------------+ | user| item| rating| prediction| +-----------+----------+------------+------------+ | 919154311|1940909433| -0.201669| -0.20149253| | -79074260|1940909433| 0.44795045| 0.4476502| | 1525869989|1940909433| -0.11397148| -0.11388531| | 113375480|-739181961|-0.049516156|-0.049473286| |-1591288030|-739181961|-0.031804726|-0.031776465| |-1158177819|-739181961| 0.507647| 0.5070719| | 1022899383|-739181961| -0.7780471| -0.7773425| | 1228230215|-739181961| -0.4406039| -0.44020513| +-----------+----------+------------+------------+ */ model.transform(test.toDF()).show() val predictions = model.transform(test.toDF()) .select("rating", "prediction") //实际评级,预测评级 .map { case Row(rating: Float, prediction: Float) => (rating.toDouble, prediction.toDouble) } //rmse 均方根误差亦称标准误差, //均方根误差常用下式表示:√[∑di^2/n]=Re,式中:n为测量次数;di为一组测量值与真值的偏差 //均方根值(RMS)、均方根误差(RMSE) val rmse = if (implicitPrefs) {//隐式 // TODO: Use a better (rank-based?) evaluation metric for implicit feedback. // We limit the ratings and the predictions to interval [0, 1] and compute the weighted RMSE // with the confidence scores as weights. val (totalWeight, weightedSumSq) = predictions.map { case (rating, prediction) => //math.abs返回数的绝对值 val confidence = 1.0 + alpha * math.abs(rating) val rating01 = math.max(math.min(rating, 1.0), 0.0) val prediction01 = math.max(math.min(prediction, 1.0), 0.0) val err = prediction01 - rating01 (confidence, confidence * err * err) }.reduce { case ((c0, e0), (c1, e1)) => (c0 + c1, e0 + e1) } //math.sqrt返回数字的平方根 math.sqrt(weightedSumSq / totalWeight) } else {//明确 //mse标准差能反映一个数据集的离散程度 val mse = predictions.map { case (rating, prediction) => val err = rating - prediction err * err //平方 }.mean()//平均数 math.sqrt(mse)//平方根 } logInfo(s"Test RMSE is $rmse.") //targetRMSE: Double = 0.05 //均方差越小,推荐结果较优 assert(rmse < targetRMSE) // copied model must have the same parent. //复制的模型必须有相同的父 MLTestingUtils.checkCopy(model) } /* test("exact rank-1 matrix") {//矩阵分解中的特征数=1 val (training, test) = genExplicitTestData(numUsers = 20, numItems = 40, rank = 1) //rank正则化参数,maxIter迭代次数,numUserBlocks设置用户数据块的个数和并行度,numProductBlocks设置物品数据块个数和并行度 testALS(training, test, maxIter = 1, rank = 1, regParam = 1e-5, targetRMSE = 0.001) testALS(training, test, maxIter = 1, rank = 2, regParam = 1e-5, targetRMSE = 0.001) }*/ /* test("approximate rank-1 matrix") {//矩阵分解特征数近似秩1 val (training, test) = genExplicitTestData(numUsers = 20, numItems = 40, rank = 1, noiseStd = 0.01) testALS(training, test, maxIter = 2, rank = 1, regParam = 0.01, targetRMSE = 0.02) testALS(training, test, maxIter = 2, rank = 2, regParam = 0.01, targetRMSE = 0.02) } test("approximate rank-2 matrix") {//矩阵分解特征数近似2 val (training, test) = genExplicitTestData(numUsers = 20, numItems = 40, rank = 2, noiseStd = 0.01) //rank正则化参数,maxIter迭代次数,numUserBlocks设置用户数据块的个数和并行度,numProductBlocks设置物品数据块个数和并行度 testALS(training, test, maxIter = 4, rank = 2, regParam = 0.01, targetRMSE = 0.03) testALS(training, test, maxIter = 4, rank = 3, regParam = 0.01, targetRMSE = 0.03) }*/ /*test("different block settings") {//不同块设置 val (training, test) = genExplicitTestData(numUsers = 20, numItems = 40, rank = 2, noiseStd = 0.01) for ((numUserBlocks, numItemBlocks) <- Seq((1, 1), (1, 2), (2, 1), (2, 2))) { //rank正则化参数,maxIter迭代次数,numUserBlocks设置用户数据块的个数和并行度,numProductBlocks设置物品数据块个数和并行度 testALS(training, test, maxIter = 4, rank = 3, regParam = 0.01, targetRMSE = 0.03, //numUserBlocks设置用户数据块的个数和并行度,numProductBlocks设置物品数据块个数和并行度 numUserBlocks = numUserBlocks, numItemBlocks = numItemBlocks) } } test("more blocks than ratings") {//多块比评级 val (training, test) = genExplicitTestData(numUsers = 4, numItems = 4, rank = 1) //rank正则化参数,maxIter迭代次数,numUserBlocks设置用户数据块的个数和并行度,numProductBlocks设置物品数据块个数和并行度 testALS(training, test, maxIter = 2, rank = 1, regParam = 1e-4, targetRMSE = 0.002, //numUserBlocks设置用户数据块的个数和并行度,numProductBlocks设置物品数据块个数和并行度 numItemBlocks = 5, numUserBlocks = 5) }*/ /* test("implicit feedback") {//隐式反馈 val (training, test) = genImplicitTestData(numUsers = 20, numItems = 40, rank = 2, noiseStd = 0.01) testALS(training, test, maxIter = 4, rank = 2, regParam = 0.01, implicitPrefs = true, targetRMSE = 0.3) }*/ /*test("using generic ID types") {//使用通用的身份标识类型 val (ratings, _) = genImplicitTestData(numUsers = 20, numItems = 40, rank = 2, noiseStd = 0.01) val longRatings = ratings.map(r => Rating(r.user.toLong, r.item.toLong, r.rating)) val (longUserFactors, _) = ALS.train(longRatings, rank = 2, maxIter = 4, seed = 0) assert(longUserFactors.first()._1.getClass === classOf[Long]) val strRatings = ratings.map(r => Rating(r.user.toString, r.item.toString, r.rating)) val (strUserFactors, _) = ALS.train(strRatings, rank = 2, maxIter = 4, seed = 0) assert(strUserFactors.first()._1.getClass === classOf[String]) }*/ /* test("nonnegative constraint") {//非负约束 val (ratings, _) = genImplicitTestData(numUsers = 20, numItems = 40, rank = 2, noiseStd = 0.01) val (userFactors, itemFactors) = //nonnegative是否需要非负约束 ALS.train(ratings, rank = 2, maxIter = 4, nonnegative = true, seed = 0) def isNonnegative(factors: RDD[(Int, Array[Float])]): Boolean = { factors.values.map { _.forall(_ >= 0.0) }.reduce(_ && _) } assert(isNonnegative(userFactors))//是否需要非负约束 assert(isNonnegative(itemFactors))//是否需要非负约束 // TODO: Validate the solution. }*/ test("als partitioner is a projection") {//als分区是一个投影 for (p <- Seq(1, 10, 100, 1000)) { val part = new ALSPartitioner(p) var k = 0 while (k < p) { assert(k === part.getPartition(k)) assert(k === part.getPartition(k.toLong)) k += 1 } } } /* test("partitioner in returned factors") {//返回分区因子 val (ratings, _) = genImplicitTestData(numUsers = 20, numItems = 40, rank = 2, noiseStd = 0.01) val (userFactors, itemFactors) = ALS.train( //numUserBlocks设置用户数据块的个数和并行度,numProductBlocks设置物品数据块个数和并行度 ratings, rank = 2, maxIter = 4, numUserBlocks = 3, numItemBlocks = 4, seed = 0) for ((tpe, factors) <- Seq(("User", userFactors), ("Item", itemFactors))) { assert(userFactors.partitioner.isDefined, s"$tpe factors should have partitioner.") val part = userFactors.partitioner.get userFactors.mapPartitionsWithIndex { (idx, items) => items.foreach { case (id, _) => if (part.getPartition(id) != idx) { throw new SparkException(s"$tpe with ID $id should not be in partition $idx.") } } Iterator.empty }.count() } }*/ /* test("als with large number of iterations") {//als具有大量的迭代 val (ratings, _) = genExplicitTestData(numUsers = 4, numItems = 4, rank = 1) //rank正则化参数,maxIter迭代次数,numUserBlocks设置用户数据块的个数和并行度,numProductBlocks设置物品数据块个数和并行度 ALS.train(ratings, rank = 1, maxIter = 50, numUserBlocks = 2, numItemBlocks = 2, seed = 0) //numUserBlocks设置用户数据块的个数和并行度,numProductBlocks设置物品数据块个数和并行度 ALS.train(ratings, rank = 1, maxIter = 50, numUserBlocks = 2, numItemBlocks = 2, implicitPrefs = true, seed = 0) }*/ }
tophua/spark1.52
mllib/src/test/scala/org/apache/spark/ml/recommendation/ALSSuite.scala
Scala
apache-2.0
24,285
/* Ayasdi Inc. Copyright 2014 - all rights reserved. */ /** * @author abhishek, ajith, mohit * big dataframe on spark: wrappers for python access via py4j */ package org.apache.spark import java.util.{ArrayList => JArrayList} import scala.collection.JavaConverters._ import scala.reflect.ClassTag import net.razorvine.pickle.Unpickler import org.apache.spark.api.java.JavaRDD import org.apache.spark.api.python.SerDeUtil import org.apache.spark.rdd.RDD object BigDFPyRDD { var initialized = false def initialize(): Unit = { SerDeUtil.initialize() synchronized { if (!initialized) { initialized = true } } } initialize() def pythonRDD(rdd: RDD[_]): JavaRDD[Array[Byte]] = { rdd.mapPartitions { iter => initialize() // lets it be called in executor new SerDeUtil.AutoBatchedPickler(iter) } } def javaRDD[T: ClassTag](pyrdd: JavaRDD[Array[Byte]]): JavaRDD[T] = { pyrdd.rdd.mapPartitions { iter => initialize() val unpickle = new Unpickler iter.flatMap { row => val v = unpickle.loads(row) v.asInstanceOf[JArrayList[T]].asScala } }.toJavaRDD() } }
AyasdiOpenSource/bigdf
src/main/scala/com/ayasdi/bigdf/BigDFPyRDD.scala
Scala
apache-2.0
1,181
/** * Copyright (C) 2013 Orbeon, Inc. * * This program is free software; you can redistribute it and/or modify it under the terms of the * GNU Lesser General Public License as published by the Free Software Foundation; either version * 2.1 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU Lesser General Public License for more details. * * The full text of the license is available at http://www.gnu.org/copyleft/lesser.html */ package org.orbeon.oxf.client import org.orbeon.oxf.client.fb.{Permissions, LabelHintEditor} import org.junit.runners.MethodSorters import org.junit.FixMethodOrder import org.orbeon.oxf.client.fr.Currency // List all client tests which we want to run with a single run of the driver @FixMethodOrder(MethodSorters.NAME_ASCENDING) class CombinedClientTest extends OrbeonClientBase with XForms with FormRunnerSummary with OrbeonFormsDemoPath with LabelHintEditor with Permissions with Currency
evlist/orbeon-forms
src/test/scala/org/orbeon/oxf/client/CombinedClientTest.scala
Scala
lgpl-2.1
1,176
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package kafka.cluster import java.io.File import java.nio.ByteBuffer import java.util.Properties import java.util.concurrent.CountDownLatch import java.util.concurrent.atomic.AtomicBoolean import kafka.api.Request import kafka.common.UnexpectedAppendOffsetException import kafka.log.{LogConfig, LogManager, CleanerConfig} import kafka.server._ import kafka.utils.{MockTime, TestUtils, MockScheduler} import kafka.zk.KafkaZkClient import org.apache.kafka.common.TopicPartition import org.apache.kafka.common.errors.ReplicaNotAvailableException import org.apache.kafka.common.metrics.Metrics import org.apache.kafka.common.utils.Utils import org.apache.kafka.common.record._ import org.apache.kafka.common.requests.LeaderAndIsrRequest import org.junit.{After, Before, Test} import org.junit.Assert._ import org.scalatest.Assertions.assertThrows import org.easymock.EasyMock import scala.collection.JavaConverters._ class PartitionTest { val brokerId = 101 val topicPartition = new TopicPartition("test-topic", 0) val time = new MockTime() val brokerTopicStats = new BrokerTopicStats val metrics = new Metrics var tmpDir: File = _ var logDir1: File = _ var logDir2: File = _ var replicaManager: ReplicaManager = _ var logManager: LogManager = _ var logConfig: LogConfig = _ @Before def setup(): Unit = { val logProps = new Properties() logProps.put(LogConfig.SegmentBytesProp, 512: java.lang.Integer) logProps.put(LogConfig.SegmentIndexBytesProp, 1000: java.lang.Integer) logProps.put(LogConfig.RetentionMsProp, 999: java.lang.Integer) logConfig = LogConfig(logProps) tmpDir = TestUtils.tempDir() logDir1 = TestUtils.randomPartitionLogDir(tmpDir) logDir2 = TestUtils.randomPartitionLogDir(tmpDir) logManager = TestUtils.createLogManager( logDirs = Seq(logDir1, logDir2), defaultConfig = logConfig, CleanerConfig(enableCleaner = false), time) logManager.startup() val brokerProps = TestUtils.createBrokerConfig(brokerId, TestUtils.MockZkConnect) brokerProps.put(KafkaConfig.LogDirsProp, Seq(logDir1, logDir2).map(_.getAbsolutePath).mkString(",")) val brokerConfig = KafkaConfig.fromProps(brokerProps) val kafkaZkClient = EasyMock.createMock(classOf[KafkaZkClient]) replicaManager = new ReplicaManager( config = brokerConfig, metrics, time, zkClient = kafkaZkClient, new MockScheduler(time), logManager, new AtomicBoolean(false), QuotaFactory.instantiate(brokerConfig, metrics, time, ""), brokerTopicStats, new MetadataCache(brokerId), new LogDirFailureChannel(brokerConfig.logDirs.size)) EasyMock.expect(kafkaZkClient.getEntityConfigs(EasyMock.anyString(), EasyMock.anyString())).andReturn(logProps).anyTimes() EasyMock.expect(kafkaZkClient.conditionalUpdatePath(EasyMock.anyObject(), EasyMock.anyObject(), EasyMock.anyObject(), EasyMock.anyObject())) .andReturn((true, 0)).anyTimes() EasyMock.replay(kafkaZkClient) } @After def tearDown(): Unit = { brokerTopicStats.close() metrics.close() logManager.shutdown() Utils.delete(tmpDir) logManager.liveLogDirs.foreach(Utils.delete) replicaManager.shutdown(checkpointHW = false) } @Test // Verify that partition.removeFutureLocalReplica() and partition.maybeReplaceCurrentWithFutureReplica() can run concurrently def testMaybeReplaceCurrentWithFutureReplica(): Unit = { val latch = new CountDownLatch(1) logManager.maybeUpdatePreferredLogDir(topicPartition, logDir1.getAbsolutePath) val log1 = logManager.getOrCreateLog(topicPartition, logConfig) logManager.maybeUpdatePreferredLogDir(topicPartition, logDir2.getAbsolutePath) val log2 = logManager.getOrCreateLog(topicPartition, logConfig, isFuture = true) val currentReplica = new Replica(brokerId, topicPartition, time, log = Some(log1)) val futureReplica = new Replica(Request.FutureLocalReplicaId, topicPartition, time, log = Some(log2)) val partition = new Partition(topicPartition.topic, topicPartition.partition, time, replicaManager) partition.addReplicaIfNotExists(futureReplica) partition.addReplicaIfNotExists(currentReplica) assertEquals(Some(currentReplica), partition.getReplica(brokerId)) assertEquals(Some(futureReplica), partition.getReplica(Request.FutureLocalReplicaId)) val thread1 = new Thread { override def run(): Unit = { latch.await() partition.removeFutureLocalReplica() } } val thread2 = new Thread { override def run(): Unit = { latch.await() partition.maybeReplaceCurrentWithFutureReplica() } } thread1.start() thread2.start() latch.countDown() thread1.join() thread2.join() assertEquals(None, partition.getReplica(Request.FutureLocalReplicaId)) } @Test def testAppendRecordsAsFollowerBelowLogStartOffset(): Unit = { val log = logManager.getOrCreateLog(topicPartition, logConfig) val replica = new Replica(brokerId, topicPartition, time, log = Some(log)) val partition = new Partition(topicPartition.topic, topicPartition.partition, time, replicaManager) partition.addReplicaIfNotExists(replica) assertEquals(Some(replica), partition.getReplica(replica.brokerId)) val initialLogStartOffset = 5L partition.truncateFullyAndStartAt(initialLogStartOffset, isFuture = false) assertEquals(s"Log end offset after truncate fully and start at $initialLogStartOffset:", initialLogStartOffset, replica.logEndOffset.messageOffset) assertEquals(s"Log start offset after truncate fully and start at $initialLogStartOffset:", initialLogStartOffset, replica.logStartOffset) // verify that we cannot append records that do not contain log start offset even if the log is empty assertThrows[UnexpectedAppendOffsetException] { // append one record with offset = 3 partition.appendRecordsToFollowerOrFutureReplica(createRecords(List(new SimpleRecord("k1".getBytes, "v1".getBytes)), baseOffset = 3L), isFuture = false) } assertEquals(s"Log end offset should not change after failure to append", initialLogStartOffset, replica.logEndOffset.messageOffset) // verify that we can append records that contain log start offset, even when first // offset < log start offset if the log is empty val newLogStartOffset = 4L val records = createRecords(List(new SimpleRecord("k1".getBytes, "v1".getBytes), new SimpleRecord("k2".getBytes, "v2".getBytes), new SimpleRecord("k3".getBytes, "v3".getBytes)), baseOffset = newLogStartOffset) partition.appendRecordsToFollowerOrFutureReplica(records, isFuture = false) assertEquals(s"Log end offset after append of 3 records with base offset $newLogStartOffset:", 7L, replica.logEndOffset.messageOffset) assertEquals(s"Log start offset after append of 3 records with base offset $newLogStartOffset:", newLogStartOffset, replica.logStartOffset) // and we can append more records after that partition.appendRecordsToFollowerOrFutureReplica(createRecords(List(new SimpleRecord("k1".getBytes, "v1".getBytes)), baseOffset = 7L), isFuture = false) assertEquals(s"Log end offset after append of 1 record at offset 7:", 8L, replica.logEndOffset.messageOffset) assertEquals(s"Log start offset not expected to change:", newLogStartOffset, replica.logStartOffset) // but we cannot append to offset < log start if the log is not empty assertThrows[UnexpectedAppendOffsetException] { val records2 = createRecords(List(new SimpleRecord("k1".getBytes, "v1".getBytes), new SimpleRecord("k2".getBytes, "v2".getBytes)), baseOffset = 3L) partition.appendRecordsToFollowerOrFutureReplica(records2, isFuture = false) } assertEquals(s"Log end offset should not change after failure to append", 8L, replica.logEndOffset.messageOffset) // we still can append to next offset partition.appendRecordsToFollowerOrFutureReplica(createRecords(List(new SimpleRecord("k1".getBytes, "v1".getBytes)), baseOffset = 8L), isFuture = false) assertEquals(s"Log end offset after append of 1 record at offset 8:", 9L, replica.logEndOffset.messageOffset) assertEquals(s"Log start offset not expected to change:", newLogStartOffset, replica.logStartOffset) } @Test def testGetReplica(): Unit = { val log = logManager.getOrCreateLog(topicPartition, logConfig) val replica = new Replica(brokerId, topicPartition, time, log = Some(log)) val partition = new Partition(topicPartition.topic, topicPartition.partition, time, replicaManager) assertEquals(None, partition.getReplica(brokerId)) assertThrows[ReplicaNotAvailableException] { partition.getReplicaOrException(brokerId) } partition.addReplicaIfNotExists(replica) assertEquals(replica, partition.getReplicaOrException(brokerId)) } @Test def testAppendRecordsToFollowerWithNoReplicaThrowsException(): Unit = { val partition = new Partition(topicPartition.topic, topicPartition.partition, time, replicaManager) assertThrows[ReplicaNotAvailableException] { partition.appendRecordsToFollowerOrFutureReplica( createRecords(List(new SimpleRecord("k1".getBytes, "v1".getBytes)), baseOffset = 0L), isFuture = false) } } @Test def testMakeFollowerWithNoLeaderIdChange(): Unit = { val partition = new Partition(topicPartition.topic, topicPartition.partition, time, replicaManager) // Start off as follower var partitionStateInfo = new LeaderAndIsrRequest.PartitionState(0, 1, 1, List[Integer](0, 1, 2).asJava, 1, List[Integer](0, 1, 2).asJava, false) partition.makeFollower(0, partitionStateInfo, 0) // Request with same leader and epoch increases by more than 1, perform become-follower steps partitionStateInfo = new LeaderAndIsrRequest.PartitionState(0, 1, 3, List[Integer](0, 1, 2).asJava, 1, List[Integer](0, 1, 2).asJava, false) assertTrue(partition.makeFollower(0, partitionStateInfo, 1)) // Request with same leader and epoch increases by only 1, skip become-follower steps partitionStateInfo = new LeaderAndIsrRequest.PartitionState(0, 1, 4, List[Integer](0, 1, 2).asJava, 1, List[Integer](0, 1, 2).asJava, false) assertFalse(partition.makeFollower(0, partitionStateInfo, 2)) // Request with same leader and same epoch, skip become-follower steps partitionStateInfo = new LeaderAndIsrRequest.PartitionState(0, 1, 4, List[Integer](0, 1, 2).asJava, 1, List[Integer](0, 1, 2).asJava, false) assertFalse(partition.makeFollower(0, partitionStateInfo, 2)) } @Test def testFollowerDoesNotJoinISRUntilCaughtUpToOffsetWithinCurrentLeaderEpoch(): Unit = { val controllerEpoch = 3 val leader = brokerId val follower1 = brokerId + 1 val follower2 = brokerId + 2 val controllerId = brokerId + 3 val replicas = List[Integer](leader, follower1, follower2).asJava val isr = List[Integer](leader, follower2).asJava val leaderEpoch = 8 val batch1 = TestUtils.records(records = List(new SimpleRecord("k1".getBytes, "v1".getBytes), new SimpleRecord("k2".getBytes, "v2".getBytes))) val batch2 = TestUtils.records(records = List(new SimpleRecord("k3".getBytes, "v1".getBytes), new SimpleRecord("k4".getBytes, "v2".getBytes), new SimpleRecord("k5".getBytes, "v3".getBytes))) val batch3 = TestUtils.records(records = List(new SimpleRecord("k6".getBytes, "v1".getBytes), new SimpleRecord("k7".getBytes, "v2".getBytes))) val partition = new Partition(topicPartition.topic, topicPartition.partition, time, replicaManager) assertTrue("Expected first makeLeader() to return 'leader changed'", partition.makeLeader(controllerId, new LeaderAndIsrRequest.PartitionState(controllerEpoch, leader, leaderEpoch, isr, 1, replicas, true), 0)) assertEquals("Current leader epoch", leaderEpoch, partition.getLeaderEpoch) assertEquals("ISR", Set[Integer](leader, follower2), partition.inSyncReplicas.map(_.brokerId)) // after makeLeader(() call, partition should know about all the replicas val leaderReplica = partition.getReplica(leader).get val follower1Replica = partition.getReplica(follower1).get val follower2Replica = partition.getReplica(follower2).get // append records with initial leader epoch val lastOffsetOfFirstBatch = partition.appendRecordsToLeader(batch1, isFromClient = true).lastOffset partition.appendRecordsToLeader(batch2, isFromClient = true) assertEquals("Expected leader's HW not move", leaderReplica.logStartOffset, leaderReplica.highWatermark.messageOffset) // let the follower in ISR move leader's HW to move further but below LEO def readResult(fetchInfo: FetchDataInfo, leaderReplica: Replica): LogReadResult = { LogReadResult(info = fetchInfo, highWatermark = leaderReplica.highWatermark.messageOffset, leaderLogStartOffset = leaderReplica.logStartOffset, leaderLogEndOffset = leaderReplica.logEndOffset.messageOffset, followerLogStartOffset = 0, fetchTimeMs = time.milliseconds, readSize = 10240, lastStableOffset = None) } partition.updateReplicaLogReadResult( follower2Replica, readResult(FetchDataInfo(LogOffsetMetadata(0), batch1), leaderReplica)) partition.updateReplicaLogReadResult( follower2Replica, readResult(FetchDataInfo(LogOffsetMetadata(lastOffsetOfFirstBatch), batch2), leaderReplica)) assertEquals("Expected leader's HW", lastOffsetOfFirstBatch, leaderReplica.highWatermark.messageOffset) // current leader becomes follower and then leader again (without any new records appended) partition.makeFollower( controllerId, new LeaderAndIsrRequest.PartitionState(controllerEpoch, follower2, leaderEpoch + 1, isr, 1, replicas, false), 1) assertTrue("Expected makeLeader() to return 'leader changed' after makeFollower()", partition.makeLeader(controllerEpoch, new LeaderAndIsrRequest.PartitionState( controllerEpoch, leader, leaderEpoch + 2, isr, 1, replicas, false), 2)) val currentLeaderEpochStartOffset = leaderReplica.logEndOffset.messageOffset // append records with the latest leader epoch partition.appendRecordsToLeader(batch3, isFromClient = true) // fetch from follower not in ISR from log start offset should not add this follower to ISR partition.updateReplicaLogReadResult(follower1Replica, readResult(FetchDataInfo(LogOffsetMetadata(0), batch1), leaderReplica)) partition.updateReplicaLogReadResult(follower1Replica, readResult(FetchDataInfo(LogOffsetMetadata(lastOffsetOfFirstBatch), batch2), leaderReplica)) assertEquals("ISR", Set[Integer](leader, follower2), partition.inSyncReplicas.map(_.brokerId)) // fetch from the follower not in ISR from start offset of the current leader epoch should // add this follower to ISR partition.updateReplicaLogReadResult(follower1Replica, readResult(FetchDataInfo(LogOffsetMetadata(currentLeaderEpochStartOffset), batch3), leaderReplica)) assertEquals("ISR", Set[Integer](leader, follower1, follower2), partition.inSyncReplicas.map(_.brokerId)) } def createRecords(records: Iterable[SimpleRecord], baseOffset: Long, partitionLeaderEpoch: Int = 0): MemoryRecords = { val buf = ByteBuffer.allocate(DefaultRecordBatch.sizeInBytes(records.asJava)) val builder = MemoryRecords.builder( buf, RecordBatch.CURRENT_MAGIC_VALUE, CompressionType.NONE, TimestampType.LOG_APPEND_TIME, baseOffset, time.milliseconds, partitionLeaderEpoch) records.foreach(builder.append) builder.build() } }
mihbor/kafka
core/src/test/scala/unit/kafka/cluster/PartitionTest.scala
Scala
apache-2.0
16,995
package org.bitcoins.core.protocol.ln import org.bitcoins.crypto._ import scodec.bits.ByteVector /** Payment preimage for generating LN invoices. */ final case class PaymentPreimage(bytes: ByteVector) extends NetworkElement { require(bytes.size == 32, s"Payment preimage size must be 32 bytes") lazy val hash: Sha256Digest = CryptoUtil.sha256(bytes) } object PaymentPreimage extends Factory[PaymentPreimage] { override def fromBytes(bytes: ByteVector): PaymentPreimage = { new PaymentPreimage(bytes) } def random: PaymentPreimage = fromBytes(ECPrivateKey.freshPrivateKey.bytes) }
bitcoin-s/bitcoin-s
core/src/main/scala/org/bitcoins/core/protocol/ln/PaymentPreimage.scala
Scala
mit
603
package io.buoyant.router.http import com.twitter.finagle.http.Fields._ import com.twitter.finagle.http.{Message, Request, Response} import com.twitter.finagle.{Service, ServiceFactory, SimpleFilter, Stack} object StripHopByHopHeadersFilter { object HopByHopHeaders { def scrub(msg: Message): Unit = { val headers = msg.headerMap headers.remove(ProxyAuthenticate) headers.remove(ProxyAuthorization) headers.remove(Te) headers.remove(Trailer) headers.remove(TransferEncoding) headers.remove(Upgrade) val headersListedInConnection: Seq[String] = headers.remove(Connection) match { case Some(s) => s.split(",").map(_.trim).filter(_.nonEmpty) case None => Nil } headersListedInConnection.foreach(headers.remove(_)) } } /** * Removes all Hop-by-Hop headers and any header listed in `Connection` header from requests. */ object filter extends SimpleFilter[Request, Response] { def apply(req: Request, svc: Service[Request, Response]) = { HopByHopHeaders.scrub(req) svc(req).map(scrubResponse) } private[this] val scrubResponse: Response => Response = { resp => HopByHopHeaders.scrub(resp) resp } } object module extends Stack.Module0[ServiceFactory[Request, Response]] { val role = Stack.Role("StripHopByHopHeadersFilter") val description = "Removes all Hop-by-Hop headers and any header listed in `Connection` header from requests" def make(next: ServiceFactory[Request, Response]) = filter andThen next } }
denverwilliams/linkerd
router/http/src/main/scala/io/buoyant/router/http/StripHopByHopHeadersFilter.scala
Scala
apache-2.0
1,577
package pl.newicom.dddd.eventhandling import akka.actor.ActorRef import pl.newicom.dddd.messaging.event.OfficeEventMessage trait EventHandler { def handle(senderRef: ActorRef, event: OfficeEventMessage) }
odd/akka-ddd
akka-ddd-core/src/main/scala/pl/newicom/dddd/eventhandling/EventHandler.scala
Scala
mit
209
/* * Copyright (c) 2013 Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see http://www.gnu.org/licenses/agpl.html. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package generated.scala.application import generated.scala._ class BinarizedGradientTemplate ( // In the reduced image. The side of the template square is then 2*r+1. val radius: Int, // Holds a tighter bounding box of the object in the original image scale val rect: Rect, val mask_list: IntDenseVector, // Pyramid level of the template (reduction_factor = 2^level) val level: Int, // The list of gradients in the template val binary_gradients: DoubleDenseVector, // indices to use for matching (skips zeros inside binary_gradients) val match_list: IndexVectorDenseC, // This is a match list of list of sub-parts. Currently unused. val occlusions: DenseVector[IntDenseVector], val templates: DenseVector[BinarizedGradientTemplate], val hist: FloatDenseVector )
TiarkRompf/lancet
src/main/scala/generated/scala/BinarizedGradientTemplate.scala
Scala
agpl-3.0
1,792
package com.scalableminds.webknossos.datastore.models import com.scalableminds.webknossos.datastore.models.datasource.DataLayer import com.scalableminds.util.geometry.{BoundingBox, Vec3Int} import org.apache.commons.lang3.builder.HashCodeBuilder trait GenericPosition { def x: Int def y: Int def z: Int } class VoxelPosition( protected val globalX: Int, protected val globalY: Int, protected val globalZ: Int, val resolution: Vec3Int ) extends GenericPosition { val x: Int = globalX / resolution.x val y: Int = globalY / resolution.y val z: Int = globalZ / resolution.z def toBucket: BucketPosition = BucketPosition(globalX, globalY, globalZ, resolution) def move(dx: Int, dy: Int, dz: Int) = new VoxelPosition(globalX + dx, globalY + dy, globalZ + dz, resolution) override def toString = s"($globalX, $globalY, $globalZ) / $resolution" override def equals(obj: scala.Any): Boolean = obj match { case other: VoxelPosition => other.globalX == globalX && other.globalY == globalY && other.globalZ == globalZ && other.resolution == resolution case _ => false } override def hashCode(): Int = new HashCodeBuilder(17, 31).append(globalX).append(globalY).append(globalZ).append(resolution).toHashCode } case class BucketPosition( globalX: Int, globalY: Int, globalZ: Int, resolution: Vec3Int ) extends GenericPosition { val bucketLength: Int = DataLayer.bucketLength val x: Int = globalX / bucketLength / resolution.x val y: Int = globalY / bucketLength / resolution.y val z: Int = globalZ / bucketLength / resolution.z def volume: Int = bucketLength * bucketLength * bucketLength def toCube(cubeLength: Int): CubePosition = new CubePosition(globalX, globalY, globalZ, resolution, cubeLength) def topLeft: VoxelPosition = { val tlx: Int = globalX - globalX % (bucketLength * resolution.x) val tly: Int = globalY - globalY % (bucketLength * resolution.y) val tlz: Int = globalZ - globalZ % (bucketLength * resolution.z) new VoxelPosition(tlx, tly, tlz, resolution) } def nextBucketInX: BucketPosition = BucketPosition(globalX + (bucketLength * resolution.x), globalY, globalZ, resolution) def nextBucketInY: BucketPosition = BucketPosition(globalX, globalY + (bucketLength * resolution.y), globalZ, resolution) def nextBucketInZ: BucketPosition = BucketPosition(globalX, globalY, globalZ + (bucketLength * resolution.z), resolution) def toHighestResBoundingBox: BoundingBox = new BoundingBox( Vec3Int(topLeft.x * resolution.x, topLeft.y * resolution.y, topLeft.z * resolution.z), bucketLength * resolution.x, bucketLength * resolution.y, bucketLength * resolution.z ) override def toString: String = s"BucketPosition($globalX, $globalY, $globalZ, mag$resolution)" } class CubePosition( protected val globalX: Int, protected val globalY: Int, protected val globalZ: Int, val resolution: Vec3Int, val cubeLength: Int ) extends GenericPosition { val x: Int = globalX / cubeLength / resolution.x val y: Int = globalY / cubeLength / resolution.y val z: Int = globalZ / cubeLength / resolution.z def topLeft: VoxelPosition = { val tlx: Int = globalX - globalX % (cubeLength * resolution.x) val tly: Int = globalY - globalY % (cubeLength * resolution.y) val tlz: Int = globalZ - globalZ % (cubeLength * resolution.z) new VoxelPosition(tlx, tly, tlz, resolution) } def toHighestResBoundingBox: BoundingBox = new BoundingBox(Vec3Int(globalX, globalY, globalZ), cubeLength * resolution.x, cubeLength * resolution.y, cubeLength * resolution.z) override def toString: String = s"CPos($x,$y,$z,res=$resolution)" }
scalableminds/webknossos
webknossos-datastore/app/com/scalableminds/webknossos/datastore/models/Positions.scala
Scala
agpl-3.0
3,871
package se.chimps.cameltow.modules import se.chimps.cameltow.{CameltowApp} import com.google.inject.{Guice => Juice, Injector, Module} import se.chimps.cameltow.lifecycle.Lifecycle import scala.collection.mutable import scala.collection.JavaConversions._ import scala.Some import se.chimps.cameltow.exceptions.NotStartedException import org.springframework.context.annotation.AnnotationConfigApplicationContext /** * Created by meduzz on 16/05/14. */ trait DependencyInjection { self:CameltowApp => def instance[T>:K, K](clazz:Class[K]):T } object DependencyInjection { trait Guice extends DependencyInjection { self:CameltowApp => private val moduleLifecycle = new GuiceLifecycle self.registerLifecycle(moduleLifecycle) override def instance[T >: K, K](clazz: Class[K]): T = moduleLifecycle.getInstance(clazz) def addModule(module: Module): Unit = { moduleLifecycle.injectable(module) } } trait Spring extends DependencyInjection { self:CameltowApp => private val springLifecycle = new SpringLifecycle self.registerLifecycle(springLifecycle) def scan(packages:String):Unit = { springLifecycle.scan(packages) } def registerSpringAnnotatedConfig(configuration:Class[_]):Unit = { springLifecycle.registerConfig(configuration) } override def instance[T >: K, K](clazz: Class[K]): T = springLifecycle.getInstance(clazz) } private class GuiceLifecycle extends Lifecycle { private val modules:mutable.MutableList[Module] = mutable.MutableList[Module]() private var injector:Option[Injector] = None def injectable(module: Module): Unit = { modules += module } override def start():Unit = injector = Some(Juice.createInjector(asJavaIterable(modules.toIterable))) override def stop():Unit = injector = None def getInstance[T >: K, K](clazz: Class[K]):T = injector match { case Some(injector:Injector) => injector.getInstance(clazz) case None => throw new NotStartedException("App has not started yet.") } } private class SpringLifecycle extends Lifecycle { val spring = new AnnotationConfigApplicationContext() def scan(packages:String) = { spring.scan(packages) } def registerConfig(config:Class[_]) = { spring.register(config) } def getInstance[T >: K, K](clazz: Class[K]): T = spring.getBean(clazz) override def start():Unit = { spring.refresh() if (spring.getBeanDefinitionCount > 0) { spring.start() } } override def stop():Unit = spring.stop() } }
Meduzz/Cameltow
src/main/scala/se/chimps/cameltow/modules/DependencyInjection.scala
Scala
gpl-2.0
2,577
/* ____ ___ *\\ ** / __ | ___ ____ /__/___ A library of building blocks ** ** / __ / __ |/ ___|/ / ___| ** ** / /_/ / /_/ /\\__ \\/ /\\__ \\ (c) 2012-2013 Reify It ** ** |_____/\\_____\\____/__/\\____/ http://basis.reify.it ** \\* */ package basis.dispatch package process trait AsyncState { async: Async => type RouteState >: Null <: RouteStateApi trait RouteStateApi { this: RouteState => def runningCount: Int def workingCount: Int def waitingCount: Int def blockedCount: Int def ceasingCount: Int def apply(index: Int): Track def apply(track: Track): TrackState def rouse(track: Track): RouteState def rouse: RouteState def accelerate(parallelism: Int): RouteState def decelerate: RouteState def setWorking(track: Track): RouteState def setWaiting(track: Track): RouteState def setBlocked(track: Track): RouteState def setCeasing(track: Track): RouteState def cease(track: Track): RouteState def signal(): Unit } def RouteState(route: Route): RouteState type TrackState >: Null <: TrackStateApi trait TrackStateApi { this: TrackState => def isWorking: Boolean def isWaiting: Boolean def isBlocked: Boolean def isCeasing: Boolean def working: TrackState def waiting: TrackState def blocked: TrackState def ceasing: TrackState } }
ReifyIt/ortho-basis
basis-dispatch/src/main/scala/basis/dispatch/process/AsyncState.scala
Scala
mit
1,692
package io.iohk.ethereum.metrics import java.util.concurrent.atomic.{AtomicBoolean, AtomicInteger} /** * A gauge that starts at `0` and can be triggered to go to `1`. * Next time it is sampled, it goes back to `0`. * This is normally used for either one-off signals (e.g. when an application starts) * or slowly re-appearing signals. Specifically, the sampling rate must be greater * than the rate the signal is triggered. */ class DeltaSpikeGauge(name: String, metrics: Metrics) { private[this] final val isTriggeredRef = new AtomicBoolean(false) private[this] final val valueRef = new AtomicInteger(0) private[this] def getValue(): Double = { if (isTriggeredRef.compareAndSet(true, false)) { valueRef.getAndSet(0) } else { valueRef.get() } } private[this] final val gauge = metrics.gauge(name, () => getValue) def trigger(): Unit = { if (isTriggeredRef.compareAndSet(false, true)) { valueRef.set(1) // Let one of the exporting metric registries pick up the `1`. // As soon as that happens, `getValue` will make sure that we go back to `0`. } } }
input-output-hk/etc-client
src/main/scala/io/iohk/ethereum/metrics/DeltaSpikeGauge.scala
Scala
mit
1,129
/* * Copyright (c) 2013 Daniel Krzywicki <[email protected]> * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ package pl.edu.agh.scalamas.stats import pl.edu.agh.scalamas.app.ConcurrentAgentRuntimeComponent /** * Mixin component for a application statistics factory method. */ trait StatsFactoryComponent { /** * The factory method. * @return */ def statsFactory: StatsFactory trait StatsFactory { /** * Creates some statistics with the given initial value and update function. */ def apply[T](initialValue: T)(updateFunction: (T, T) => T): Stats[T] } } /** * Factory for simple stats. */ trait SimpleStatsFactory extends StatsFactoryComponent { def statsFactory = SimpleStatsFactoryImpl object SimpleStatsFactoryImpl extends StatsFactory { def apply[T](initialValue: T)(updateFunction: (T, T) => T) = Stats.simple(initialValue)(updateFunction) } } /** * Factory for concurrent stats. */ trait ConcurrentStatsFactory extends StatsFactoryComponent { this: ConcurrentAgentRuntimeComponent => def statsFactory = ConcurrentStatsFactoryImpl object ConcurrentStatsFactoryImpl extends StatsFactory { def apply[T](initialValue: T)(updateFunction: (T, T) => T) = Stats.concurrent(initialValue)(updateFunction)(agentRuntime.system.dispatcher) } }
eleaar/scala-mas
core/src/main/scala/pl/edu/agh/scalamas/stats/StatsFactory.scala
Scala
mit
2,348
package org.tesserae import org.slf4j.LoggerFactory import java.util.concurrent.locks.ReentrantReadWriteLock import org.iq80.leveldb.{CompressionType, Options, DB} import java.io.File import org.fusesource.leveldbjni.JniDBFactory._ import scala.Some /** * Manage any LevelDB database connections. Once established, a connection remains open * for the lifetime of the JVM. All loading is lazy. */ object LevelDBManager { private lazy val logger = LoggerFactory.getLogger(getClass) private val lock = new ReentrantReadWriteLock(true) private var databases: Map[String, (DB, ReentrantReadWriteLock)] = Map.empty /** * Load a LevelDB database * * @param dbLocation The location of the database * @param createIfMissing if true and the database doesn't exist, it will be created * @return A LevelDB DB instance */ private def loadDB(dbLocation: File, createIfMissing: Boolean) = { val opts = new Options opts.createIfMissing(createIfMissing) opts.compressionType(CompressionType.NONE) val _db = factory.open(dbLocation, opts) if (_db == null) { throw new IllegalStateException("db is null (couldn't load database?)") } logger.info("Loaded database: " + dbLocation.getPath) _db } /** * Get a database connection for a given location * * @param dbLocation The location of the database * @param createIfMissing if true and the database doesn't exist, it will be created * @return A LevelDB DB instance */ def dbFor(dbLocation: File, createIfMissing: Boolean = false) = { val key = dbLocation.getAbsoluteFile.getCanonicalPath lock.readLock().lock() try { databases.get(key) match { case Some(tuple) => tuple case None => { lock.readLock().unlock() lock.writeLock().lock() try { databases.get(key) match { case Some(tuple) => tuple case None => { val db = loadDB(dbLocation, createIfMissing) val dbLock = new ReentrantReadWriteLock(true) val tuple = (db, dbLock) databases += key -> tuple tuple } } } finally { lock.writeLock().unlock() lock.readLock().lock() } } } } finally { lock.readLock().unlock() } } }
eberle1080/tesserae-ng
text-analysis/src/main/scala/db/LevelDBManager.scala
Scala
bsd-2-clause
2,380
class a { ne/*caret*/ } /* new */
ilinum/intellij-scala
testdata/keywordCompletion/expressions/new.scala
Scala
apache-2.0
35
package org.pfcoperez.dailyalgorithm.numericmethods.random import org.pfcoperez.dailyalgorithm.numericmethods.random.DistributionRandomGenerator.DensityFunction import org.pfcoperez.dailyalgorithm.numericmethods.random.impl.DoubleRandomGen class DistributionRandomGenerator private ( private val randomDoubleGen: RandomGenerator[Double], val densityFunction: DensityFunction) extends RandomGenerator[Double] { final override def next: (DistributionRandomGenerator, Double) = { def normalize(x: Double): Double = if (x < 0.0) normalize(-x) else if (x > 1.0) normalize(x - x.floor) else x def withinRange(x: Double, range: (Double, Double)): Double = { val (a, b) = range a + normalize(x) * (b - a) } val (nextDoubleGenA, rawX) = randomDoubleGen.next val (nextDoubleGenB, rawY) = nextDoubleGenA.next val updatedGenerator = new DistributionRandomGenerator(nextDoubleGenB, densityFunction) val Seq(x, y) = Seq(rawX, rawY) map (withinRange(_, densityFunction.domain)) val candidate = densityFunction.lift(x) collect { case maxY if y >= 0.0 && y <= maxY => updatedGenerator -> x } if (candidate.isDefined) candidate.get else updatedGenerator.next } } object DistributionRandomGenerator { import scala.runtime.AbstractPartialFunction case class DensityFunction(domain: (Double, Double))( f: Double => Double) extends AbstractPartialFunction[Double, Double] { override def applyOrElse[A1 <: Double, B1 >: Double](x: A1, default: (A1) => B1): B1 = { if (isDefinedAt(x)) f(x) else default(x) } override def isDefinedAt(x: Double): Boolean = { val (from, to) = domain from <= x && x <= to } def validateDensity(step: Double, tolerance: Option[Double] = None): Boolean = { val (a, b) = domain val acceptedError = tolerance.getOrElse(2 * step) val p = (a to b by step).map(f).sum * step math.abs(p - 1.0) <= acceptedError } } object DensityFunctions { def uniform(range: (Double, Double)): DensityFunction = { val (from, to) = range DensityFunction(range)(_ => 1.0 / (from - to)) } def normal(mean: Double, variance: Double)(range: (Double, Double)): DensityFunction = { import math.{ sqrt, exp, Pi } val (from, to) = range val mainFactor = 1.0 / sqrt(2.0 * Pi * variance) val expDem = -2.0 * variance DensityFunction(from, to) { x => val desv = x - mean mainFactor * exp(desv * desv / expDem) } } } def apply(df: DensityFunction, seed: Long): DistributionRandomGenerator = { new DistributionRandomGenerator(new DoubleRandomGen(seed), df) } }
pfcoperez/algorithmaday
src/main/scala/org/pfcoperez/dailyalgorithm/numericmethods/random/DistributionRandomGenerator.scala
Scala
gpl-3.0
2,713
package codemodels.incrementalparsers.javaip import name.lakhin.eliah.projects.papacarlo.lexis.{Matcher, Tokenizer, Contextualizer, Token} import name.lakhin.eliah.projects.papacarlo.{Syntax, Lexer} import name.lakhin.eliah.projects.papacarlo.syntax.Rule import name.lakhin.eliah.projects.papacarlo.syntax.Expressions._ import name.lakhin.eliah.projects.papacarlo.syntax.NodeAccessor import name.lakhin.eliah.projects.papacarlo.syntax.rules.{ExpressionRule, NamedRule} import name.lakhin.eliah.projects.papacarlo.syntax.Rule._ object JavaIP { def tokenizer = { val tokenizer = new Tokenizer() import tokenizer._ import Matcher._ // lexis specification here tokenCategory( "whitespace", oneOrMore(anyOf(" \\t\\f\\n")) // in terms of regexp: [:space:]+ ).skip // For some reason I managed to parse it only as integerLiteral... tokenCategory( "floatL", sequence( choice( // in terms of regexp: 0|([1-9][0-9]*) chunk("0"), sequence(rangeOf('1', '9'), zeroOrMore(rangeOf('0', '9'))) ), optional(sequence( chunk("."), oneOrMore(rangeOf('0', '9')) )), choice(chunk("f"),chunk("F")) ) ) tokenCategory( "double", sequence( choice( // in terms of regexp: 0|([1-9][0-9]*) chunk("0"), sequence(rangeOf('1', '9'), zeroOrMore(rangeOf('0', '9'))) ), chunk("."), oneOrMore(rangeOf('0', '9')), optional(choice(chunk("f"),chunk("F"))) ) ) tokenCategory( "longL", sequence( choice( // in terms of regexp: 0|([1-9][0-9]*) chunk("0"), sequence(rangeOf('1', '9'), zeroOrMore(rangeOf('0', '9'))) ), choice(chunk("L"),chunk("l"))) ) tokenCategory( "integer", sequence( choice( // in terms of regexp: 0|([1-9][0-9]*) chunk("0"), sequence(rangeOf('1', '9'), zeroOrMore(rangeOf('0', '9'))) ), optional(choice(chunk("f"),chunk("F")))) ) tokenCategory( "string", sequence( chunk("\\""), zeroOrMore(choice( anyExceptOf("\\n\\r\\\\\\""), sequence(chunk("\\\\"), anyExceptOf("\\n\\r")) )), chunk("\\"") ) ).mutable tokenCategory( "char", sequence( chunk("'"), choice( sequence(chunk("\\\\"),any()), anyExceptOf("'") ), chunk("'") ) ).mutable tokenCategory( "annotationName", sequence( chunk("@"), choice(chunk("_"),rangeOf('a', 'z'),rangeOf('A','Z')), zeroOrMore( choice( chunk("_"), rangeOf('a', 'z'), rangeOf('A','Z'), rangeOf('0', '9'))), zeroOrMore( sequence( chunk("."),choice(chunk("_"),rangeOf('a', 'z'),rangeOf('A','Z')), zeroOrMore( choice( chunk("_"), rangeOf('a', 'z'), rangeOf('A','Z'), rangeOf('0', '9'))))) ) ).mutable tokenCategory( "identifier", sequence( choice(chunk("_"),rangeOf('a', 'z'),rangeOf('A','Z')), zeroOrMore( choice( chunk("_"), rangeOf('a', 'z'), rangeOf('A','Z'), rangeOf('0', '9')))) ).mutable terminals("(", ")", "%", "++","--","+", "-", "*", "/", "{", "}",";",":",".",",", "&&","||", "+=","-=","*=","/=", "==","!=","<=",">=","<",">", "!", "=","&","|","[","]", "?", "//","/*","*/") keywords( "true", "false", "null", "byte","int", "char", "short", "long", "float", "double", "void", "do", "while", "for", "switch", "case", "break", "return", "throw","continue","default", "if","else", "import", "@interface", "class","interface","enum", "private","protected","public", "static","native","final", "synchronized","abstract","volatile", "extends","implements","throws", "try", "catch","finally", "this", "new", "package", "instanceof" ) tokenizer } private def contextualizer = { val contextualizer = new Contextualizer import contextualizer._ // fragment specification here trackContext("/*", "*/").forceSkip.topContext trackContext("//", Token.LineBreakKind).forceSkip.topContext trackContext("[", "]").allowCaching trackContext("{", "}").allowCaching trackContext("\\"", "\\"").topContext contextualizer } def lexer = new Lexer(tokenizer, contextualizer) def syntax(lexer: Lexer) = new { val syntax = new Syntax(lexer) import syntax._ import Rule._ val qualifiedIdentifier = rule("qualifiedIdentifier") { oneOrMore( capture("part",token("identifier")), separator = token(".") ) } // Expressions start val doubleLiteral = rule("doubleLiteral") { capture("value",token("double")) } val floatLiteral = rule("floatLiteral") { capture("value",token("floatL")) } val integerLiteral = rule("integerLiteral") { capture("value",token("integer")) } val longLiteral = rule("longLiteral") { capture("value",token("longL")) } val stringLiteral = rule("stringLiteral") { capture("value",token("string")) } val charLiteral = rule("charLiteral") { capture("value",token("char")) } val booleanLiteral = rule("booleanLiteral") { capture("value",choice(token("true"),token("false"))) } val thisReference = rule("thisReference") { token("this") } val classReference = rule("classReference") { token("class") } val superReference = rule("superReference") { sequence( token("super"), optional(sequence( token("("), zeroOrMore(branch("actualParams",exp),separator = token(",")), token(")") )) ) } val nullReference = rule("nullReference") { token("null") } val variableReference = rule("variableReference") { capture("name",token("identifier")) } val instantiation = rule("instantiation").transform{ orig => if (orig.getBranches contains "classInst"){ orig.getBranches("classInst").head } else { orig.getBranches("arrayInst").head } } { choice( branch("classInst",classInstantiation), branch("arrayInst",arrayInstantiation)) } val classInstantiation = rule("classInstantiation"){ sequence( token("new"), choice(branch("className",qualifiedIdentifier), branch("typeName",primitiveType)), optional(branch("genericParams",genericParams)), token("("), zeroOrMore(branch("actualParams",exp),separator = token(",")), token(")"), optional(sequence( token("{"), branch("members",zeroOrMore(memberDecl)), token("}") )) ) } val arrayInstantiation = rule("arrayInstantiation"){ sequence( token("new"), choice(branch("className",qualifiedIdentifier), branch("typeName",primitiveType)), choice(sequence( token("["), capture("size",exp), token("]")), sequence( token("["), token("]"), token("{"), zeroOrMore(exp,separator = token(",")), token("}") )) ) } val paren = rule("paren").transform { orig => if (orig.getBranches contains "castedExp"){ orig.accessor.setKind("castExp").node } else { orig } }{ choice( sequence( token("("), capture("value",choice(typeUsage)), token(")"), branch("castedExp",exp)), sequence( token("("), capture("value",choice(exp)), token(")") ) ) } val assignment = rule("assignment"){ sequence( branch("assigned",choice(qualifiedIdentifier,fieldAccess)), optional(sequence( token("["), exp, token("]") )), token("="), branch("value",exp) ) } val arrayInit = rule("arrayInit"){ sequence(token("{"), zeroOrMore(branch("value",exp),separator=token(",")), optional(token(",")), token("}")) } val namedOrSimpleParam = rule("namedOrSimpleParam"){ sequence( optional(sequence( token("identifier"), token("=") )), exp ) } val annotationInstantiation = rule("annotationInstantiation"){ sequence( token("annotationName"), token("("), zeroOrMore(namedOrSimpleParam,separator=token(",")), token(")")) } val expAtom = subrule("expAtom") { choice( annotationInstantiation, floatLiteral, arrayInit, assignment, thisReference, classReference, doubleLiteral, longLiteral, integerLiteral, stringLiteral, charLiteral, booleanLiteral, instantiation, superReference, nullReference, paren, variableReference ) } val expAccess = rule("expAccess").transform { orig => if (orig.getValues contains "fieldName"){ orig } else { orig.getBranches("value").head } } { sequence( branch("value",expAtom), zeroOrMore(sequence( token("."), choice( capture("fieldName",token("identifier"))) )) ) } val invocation = rule("invocation"){ sequence( token("("), zeroOrMore(branch("actualParams",exp),separator = token(",")), token(")")) } val expMethodCall = rule("expMethodCall").transform{ orig => if (orig.getBranches contains "invocation"){ orig } else { orig.getBranches("base").head } } { sequence( branch("base",sequence(expAtom)), optional(branch("invocation",invocation))) } val expOpElement = subrule("expOpElement"){ choice(expMethodCall,expAccess) } val expOp : NamedRule = rule("expression") { val rule = expression(branch("operand", expOpElement)) postfix(rule,"++",1) postfix(rule,"--",1) prefix(rule,"++",1) prefix(rule,"--",1) prefix(rule,"!",1) infix(rule, "%", 1) prefix(rule, "+", 2) prefix(rule, "-", 2) infix(rule, "*", 3) infix(rule, "/", 3, rightAssociativity = true) infix(rule, "+", 4) infix(rule, "-", 4) infix(rule, "==", 5) //infix(rule,"=",8) infix(rule, "!=", 5) infix(rule, ">=", 5) infix(rule, "<=", 5) infix(rule, "+=", 5) infix(rule, "-=", 5) infix(rule, "/=", 5) infix(rule, "*=", 5) infix(rule, "<", 5) infix(rule, ">", 5) infix(rule,"&&",7) infix(rule,"||",7) infix(rule,"&",7) infix(rule,"|",7) rule } val arrayAccessPart = rule("arrayAccessPart"){ sequence(token("["), optional(branch("index",exp)), token("]")) } val expArrayAccess = rule("expArrayAccess").transform { orig => if (orig.getBranches contains "arrayAccess"){ orig } else { orig.getBranches("value").head } } { sequence( branch("value",expOp), optional(branch("arrayAccess",arrayAccessPart))) } val chainExp = rule("chainExp").transform { orig => if (orig.getBranches contains "chained"){ orig } else { orig.getBranches("base").head } } { sequence( branch("base",expArrayAccess), zeroOrMore(sequence( token("."), optional(branch("genericParams",genericParams)), branch("chained",expArrayAccess) )) ) } val instanceOfExp = rule("instanceOfExpSuffix").transform { orig => if (orig.getBranches contains "typeUsage"){ orig } else { orig.getBranches("base").head } }{ sequence( branch("base",chainExp), optional(sequence( token("instanceof"), branch("type",typeUsage) ))) } val ifElseExp = rule("ifElseExp").transform { orig => if (orig.getBranches contains "thenValue"){ orig } else { orig.getBranches("base").head } }{ sequence( branch("base",instanceOfExp), optional(sequence( token("?"), branch("thenValue",exp), token(":"), branch("elseValue",exp) )) ) } val exp : Rule = subrule("expUsage") { ifElseExp } // Expressions end val accessQualifier = rule("accessQualifier") { capture("name",choice( token("public"), token("protected"), token("private") )) } val qualifier = rule("qualifier").transform{ orig => if (orig.getValues contains "static"){ orig.accessor.setKind("staticQualifier") orig.accessor.setConstant("static",null) orig } else { orig } } { choice( branch("access", accessQualifier), capture("static", token("static")), capture("final", token("final")), capture("abstract",token("abstract")), capture("volatile",token("volatile")) ) } val classType : NamedRule = rule("classType") { sequence( capture("name",token("identifier")), optional(sequence(token("."),branch("member",classType))), optional(branch("genericParams",genericParams)) ) } val primitiveType = rule("primitiveType") { capture("name",choice( token("int"), token("byte"), token("char"), token("long"), token("float"), token("double"), token("boolean") )) } val arrayTypeMod = rule("arrayType") { sequence( token("["), token("]") ) } val genericCapture = rule("genericCapture"){ sequence( token("?"), optional(sequence( token("extends"), branch("baseType",typeUsage) )) ) } val genericParams : NamedRule = rule("genericParams"){ sequence( token("<"), zeroOrMore(branch("params",choice(genericCapture,typeUsage)),separator = token(",")), token(">") ) } val typeUsage = rule("typeUsage") { sequence( branch("baseType", choice( primitiveType, classType )), zeroOrMore(branch("array",arrayTypeMod)) ) } val voidType = rule("voidType") {token("void")} val fieldDecl = rule("fieldDecl") { sequence( branch("qualifiers",zeroOrMore(qualifier)), branch("annotations",zeroOrMore(annotationUsage)), branch("qualifiers",zeroOrMore(qualifier)), branch("type",typeUsage), oneOrMore(capture("name", token("identifier")),separator=token(",")), optional( sequence( token("="), branch("initializationValue",exp) ) ), token(";").permissive ) } val paramDecl = rule("paramDecl") { sequence( zeroOrMore(annotationUsage), optional(capture("final",token("final"))), branch("type",typeUsage), capture("name",token("identifier")) ) } val constructorDecl = rule("constructorDecl") { sequence( branch("annotations",zeroOrMore(annotationUsage)), branch("qualifiers",zeroOrMore(qualifier)), capture("name", token("identifier")), token("("), zeroOrMore( branch("params", paramDecl), separator = token(",") ), recover(token(")"),"Missing closing parenthesis"), optional(sequence( token("throws"), oneOrMore(branch("exceptionsThrown",qualifiedIdentifier),separator = token(",")) )), choice( token(";"), sequence( token("{"), zeroOrMore(branch("stmts",statement)), token("}"), optional(token(";")) ) ) ) } val annotationUsage = rule("annotationUsage"){ sequence( capture("name",token("annotationName")), optional(sequence( token("("), oneOrMore(capture("val",choice(sequence(token("identifier"),token("="),exp),exp)),separator=token(",")), token(")") )) ) } val methodDecl = rule("methodDecl") { sequence( branch("annotations",zeroOrMore(annotationUsage)), branch("qualifiers",zeroOrMore(qualifier)), optional(branch("genericParams",genericParams)), branch("returnType", choice( typeUsage, voidType ) ), capture("name", token("identifier")), token("("), zeroOrMore( branch("params", paramDecl), separator = token(",") ), recover(token(")"),"Missing closing parenthesis"), optional(sequence( token("throws"), oneOrMore(branch("exceptionsThrown",qualifiedIdentifier),separator = token(",")) )), choice( capture("abstractBody",token(";")), sequence( token("{"), zeroOrMore(branch("stmts",statement)), token("}"), optional(token(";")) ) ) ) } val initializer : NamedRule = rule("initializer") { sequence( optional(token("static")), token("{"), zeroOrMore(branch("statements",statement)), token("}") ) } val memberDecl : NamedRule = rule("memberDecl") { choice( branch("constructor",constructorDecl), branch("method",methodDecl), branch("field",fieldDecl), branch("class",classDeclaration), branch("interface",javaInterface), branch("initializer",initializer), branch("enum",enumDecl) ) } val classDeclaration = rule("classDeclaration") { // Consists of three sequential parts: "[" token, series of nested // elements separated with "," token, and losing "]" token. sequence( branch("annotations",zeroOrMore(annotationUsage)), branch("qualifiers",zeroOrMore(qualifier)), token("class"), capture("name", token("identifier")), optional(sequence( token("extends"), branch("baseClass",typeUsage) )), optional( sequence( token("implements"), oneOrMore( branch("interfaces",typeUsage), separator = token(",") ) ) ), token("{"), branch("members",zeroOrMore(memberDecl)), recover(token("}"), "class must end with '}'") ) } val javaInterface = rule("javaInterface") { sequence( branch("annotations",zeroOrMore(annotationUsage)), branch("qualifiers",zeroOrMore(qualifier)), token("interface"), capture("name", token("identifier")), optional(sequence( token("extends"), oneOrMore(branch("baseClass",typeUsage),separator=token(",")) )), token("{"), branch("members",zeroOrMore(memberDecl)), recover(token("}"), "interface must end with '}'") ) } val annotationDeclField = rule("annotationDeclField") { sequence( typeUsage, token("identifier"), token("("), token(")"), optional(sequence( token("default"), exp )), recover(token(";"), "annotation field must end with '}'") ) } val annotationDecl = rule("annotationDecl") { sequence( branch("annotations",zeroOrMore(annotationUsage)), branch("qualifiers",zeroOrMore(qualifier)), token("@interface"), capture("name", token("identifier")), token("{"), zeroOrMore(branch("fields",choice(annotationDeclField,enumDecl))), recover(token("}"), "annotation declaration must end with '}'") ) } val importDir = rule("importDir") { sequence( token("import"), optional(capture("static",token("static"))), capture("part",token("identifier")), zeroOrMore( sequence( token("."), choice( capture("part",token("identifier")), capture("part",token("*")) ) ) ), token(";").permissive ) } val packageDecl = rule("packageDecl") { sequence( branch("annotations",zeroOrMore(annotationUsage)), token("package"), branch("packageName",qualifiedIdentifier), token(";") ) } val fieldName = rule("fieldName"){ capture("name",token("identifier")) } val enumDecl = rule("enumDecl") { sequence( branch("annotations",zeroOrMore(annotationUsage)), branch("qualifiers",zeroOrMore(qualifier)), token("enum"), capture("name", token("identifier")), optional(sequence( token("extends"), branch("baseClass",typeUsage) )), optional( sequence( token("implements"), oneOrMore( branch("interfaces",typeUsage), separator = token(",") ) ) ), token("{"), oneOrMore(branch("fields",fieldName),separator=token(",")), optional(sequence(token(";"),branch("members",zeroOrMore(memberDecl)))), recover(token("}"), "class must end with '}'")) } val compilationUnit = rule("compilationUnit").main { sequence( optional(branch("packageDecl",packageDecl)), branch("imports",zeroOrMore(importDir)), zeroOrMore(branch("classDeclaration",choice(javaInterface,classDeclaration,annotationDecl,enumDecl))) ) } val fieldAccess = rule("fieldAccess"){ sequence( token("this"), token("."), branch("field",qualifiedIdentifier) ) } // Statements val expressionStatement = rule("expressionStatement"){ sequence( branch("expression",exp), recover(token(";"),"semicolon missing") ) } val emptyStatement = rule("emptyStatement"){ token(";") } val returnStmt = rule("returnStmt"){ sequence( token("return"), optional(branch("value",exp)), recover(token(";"),"semicolon missing") ) } val localVarDecl = rule("localVarDecl") { sequence( optional(capture("final",token("final"))), branch("annotations",zeroOrMore(annotationUsage)), branch("type",typeUsage), oneOrMore( sequence( capture("name", token("identifier")), zeroOrMore(sequence(token("["),token("]"))), optional( sequence( token("="), branch("initializationValue",exp) ) )),separator = token(",")), recover(token(";"),"semicolon missing") ) } val simpleLocalVarDecl = rule("simpleLocalVarDecl") { sequence( optional(capture("final",token("final"))), branch("type",typeUsage), oneOrMore(capture("name", token("identifier")),separator = token(",")) ) } val blockStmt : NamedRule = rule("blockStmt") { sequence( token("{"), zeroOrMore(branch("stmts",statement)), recover(token("}"),"Missing }"), optional(token(";")) ) } val ifStmt : NamedRule = rule("ifStmt") { sequence( token("if"), token("("), branch("condition",exp), recover(token(")"),"closing parenthesis expected"), branch("then",statement), optional(sequence( token("else"), branch("else",statement) )) ) } val forStmt = rule("forStmt") { sequence( token("for"), token("("), branch("init",statement), optional(exp), recover(token(";"),"semicolon missing"), optional(exp), recover(token(")"),"closing parenthesis expected"), branch("body",statement) ) } val forEachStmt = rule("forEachStmt") { sequence( token("for"), token("("), branch("iterator",simpleLocalVarDecl), token(":"), branch("collection",exp), recover(token(")"),"closing parenthesis expected"), branch("body",statement) ) } val whileStmt = rule("whileStmt") { sequence( token("while"), token("("), optional(exp), recover(token(")"),"closing parenthesis expected"), branch("body",statement) ) } val catchClause = rule("catchClause"){ sequence( token("catch"), token("("), oneOrMore(capture("exceptions",qualifiedIdentifier),separator=token("|")), token("identifier"), recover(token(")"),"closing parenthesis expected"), token("{"), zeroOrMore(statement), recover(token("}"),"Missing }")) } val tryWithResourceStmt = rule("tryWithResourceStmt") { sequence( token("try"), token("("), oneOrMore(sequence(optional(token("final")),typeUsage,token("identifier"),token("="),exp),separator=token(";")), optional(token(";")), token(")"), token("{"), zeroOrMore(statement), token("}"), zeroOrMore(branch("catch",catchClause))) } val tryStmt = rule("tryStmt") { sequence( token("try"), token("{"), zeroOrMore(statement), recover(token("}"),"closing bracket expected"), choice( sequence( oneOrMore(branch("catch",catchClause)), optional(sequence( token("finally"), token("{"), zeroOrMore(statement), token("}") ))), sequence( token("finally"), token("{"), zeroOrMore(statement), token("}")) )) } val throwStmt = rule("throwStmt") { sequence( token("throw"), branch("value",exp) ) } val synchronizedStmt = rule("synchronizedStmt") { sequence( token("synchronized"), token("("), exp, token(")"), statement ) } val breakStmt = rule("breakStmt") { sequence(token("break"),token(";")) } val continueStmt = rule("continueStmt") { sequence(token("continue"),token(";")) } val caseClause = rule("caseClause") { sequence(token("case"),branch("label",exp),token(":"),zeroOrMore(branch("statements",statement))) } val defaultClause = rule("defaultClause") { sequence(token("default"),token(":"),zeroOrMore(branch("statements",statement))) } val switchStmt = rule("switchStmt") { sequence( token("switch"), token("("), branch("value",exp), token(")"), token("{"), zeroOrMore(branch("cases",caseClause)), optional(branch("default",defaultClause)), token("}") ) } val statement : NamedRule = subrule("statement") { choice( switchStmt, localVarDecl, breakStmt, continueStmt, returnStmt, blockStmt, expressionStatement, ifStmt, tryWithResourceStmt, tryStmt, whileStmt, forStmt, synchronizedStmt, forEachStmt, emptyStatement, throwStmt ) } }.syntax }
ftomassetti/JavaIncrementalParser
src/main/scala/javaip.scala
Scala
apache-2.0
28,254
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.flink.table.runtime.stream.table import java.io.File import java.lang.{Boolean => JBool} import org.apache.flink.api.common.functions.MapFunction import org.apache.flink.api.common.typeinfo.TypeInformation import org.apache.flink.api.java.tuple.{Tuple2 => JTuple2} import org.apache.flink.api.java.typeutils.RowTypeInfo import org.apache.flink.api.scala._ import org.apache.flink.streaming.api.TimeCharacteristic import org.apache.flink.streaming.api.datastream.DataStream import org.apache.flink.streaming.api.functions.ProcessFunction import org.apache.flink.streaming.api.functions.sink.SinkFunction import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment import org.apache.flink.table.api.scala._ import org.apache.flink.table.api.{TableEnvironment, TableException, Types} import org.apache.flink.table.runtime.utils.{StreamITCase, StreamTestData} import org.apache.flink.table.sinks._ import org.apache.flink.table.utils.MemoryTableSourceSinkUtil import org.apache.flink.test.util.{AbstractTestBase, TestBaseUtils} import org.apache.flink.types.Row import org.apache.flink.util.Collector import org.junit.Assert._ import org.junit.Test import scala.collection.JavaConverters._ import scala.collection.mutable class TableSinkITCase extends AbstractTestBase { @Test def testInsertIntoRegisteredTableSink(): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment env.getConfig.enableObjectReuse() env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) val tEnv = TableEnvironment.getTableEnvironment(env) MemoryTableSourceSinkUtil.clear() val input = StreamTestData.get3TupleDataStream(env) .assignAscendingTimestamps(r => r._2) val fieldNames = Array("d", "e", "t") val fieldTypes: Array[TypeInformation[_]] = Array(Types.STRING, Types.SQL_TIMESTAMP, Types.LONG) val sink = new MemoryTableSourceSinkUtil.UnsafeMemoryAppendTableSink tEnv.registerTableSink("targetTable", fieldNames, fieldTypes, sink) input.toTable(tEnv, 'a, 'b, 'c, 't.rowtime) .where('a < 3 || 'a > 19) .select('c, 't, 'b) .insertInto("targetTable") env.execute() val expected = Seq( "Hi,1970-01-01 00:00:00.001,1", "Hello,1970-01-01 00:00:00.002,2", "Comment#14,1970-01-01 00:00:00.006,6", "Comment#15,1970-01-01 00:00:00.006,6").mkString("\\n") TestBaseUtils.compareResultAsText(MemoryTableSourceSinkUtil.tableData.asJava, expected) } @Test def testStreamTableSink(): Unit = { val tmpFile = File.createTempFile("flink-table-sink-test", ".tmp") tmpFile.deleteOnExit() val path = tmpFile.toURI.toString val env = StreamExecutionEnvironment.getExecutionEnvironment env.getConfig.enableObjectReuse() env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) val tEnv = TableEnvironment.getTableEnvironment(env) env.setParallelism(4) tEnv.registerTableSink( "csvSink", new CsvTableSink(path).configure( Array[String]("c", "b"), Array[TypeInformation[_]](Types.STRING, Types.SQL_TIMESTAMP))) val input = StreamTestData.get3TupleDataStream(env) .assignAscendingTimestamps(_._2) .map(x => x).setParallelism(4) // increase DOP to 4 input.toTable(tEnv, 'a, 'b.rowtime, 'c) .where('a < 5 || 'a > 17) .select('c, 'b) .insertInto("csvSink") env.execute() val expected = Seq( "Hi,1970-01-01 00:00:00.001", "Hello,1970-01-01 00:00:00.002", "Hello world,1970-01-01 00:00:00.002", "Hello world, how are you?,1970-01-01 00:00:00.003", "Comment#12,1970-01-01 00:00:00.006", "Comment#13,1970-01-01 00:00:00.006", "Comment#14,1970-01-01 00:00:00.006", "Comment#15,1970-01-01 00:00:00.006").mkString("\\n") TestBaseUtils.compareResultsByLinesInMemory(expected, path) } @Test def testAppendSinkOnAppendTable(): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment env.getConfig.enableObjectReuse() env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) val tEnv = TableEnvironment.getTableEnvironment(env) val t = StreamTestData.get3TupleDataStream(env) .assignAscendingTimestamps(_._1.toLong) .toTable(tEnv, 'id, 'num, 'text, 'rowtime.rowtime) tEnv.registerTableSink( "appendSink", new TestAppendSink().configure( Array[String]("t", "icnt", "nsum"), Array[TypeInformation[_]](Types.SQL_TIMESTAMP, Types.LONG, Types.LONG))) t.window(Tumble over 5.millis on 'rowtime as 'w) .groupBy('w) .select('w.end as 't, 'id.count as 'icnt, 'num.sum as 'nsum) .insertInto("appendSink") env.execute() val result = RowCollector.getAndClearValues.map(_.f1.toString).sorted val expected = List( "1970-01-01 00:00:00.005,4,8", "1970-01-01 00:00:00.01,5,18", "1970-01-01 00:00:00.015,5,24", "1970-01-01 00:00:00.02,5,29", "1970-01-01 00:00:00.025,2,12") .sorted assertEquals(expected, result) } @Test def testAppendSinkOnAppendTableForInnerJoin(): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment env.getConfig.enableObjectReuse() env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) val tEnv = TableEnvironment.getTableEnvironment(env) val ds1 = StreamTestData.getSmall3TupleDataStream(env).toTable(tEnv, 'a, 'b, 'c) val ds2 = StreamTestData.get5TupleDataStream(env).toTable(tEnv, 'd, 'e, 'f, 'g, 'h) tEnv.registerTableSink( "appendSink", new TestAppendSink().configure( Array[String]("c", "g"), Array[TypeInformation[_]](Types.STRING, Types.STRING))) ds1.join(ds2).where('b === 'e) .select('c, 'g) .insertInto("appendSink") env.execute() val result = RowCollector.getAndClearValues.map(_.f1.toString).sorted val expected = List("Hi,Hallo", "Hello,Hallo Welt", "Hello world,Hallo Welt").sorted assertEquals(expected, result) } @Test def testRetractSinkOnUpdatingTable(): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment env.getConfig.enableObjectReuse() env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) val tEnv = TableEnvironment.getTableEnvironment(env) val t = StreamTestData.get3TupleDataStream(env) .assignAscendingTimestamps(_._1.toLong) .toTable(tEnv, 'id, 'num, 'text) tEnv.registerTableSink( "retractSink", new TestRetractSink().configure( Array[String]("len", "icnt", "nsum"), Array[TypeInformation[_]](Types.INT, Types.LONG, Types.LONG))) t.select('id, 'num, 'text.charLength() as 'len) .groupBy('len) .select('len, 'id.count as 'icnt, 'num.sum as 'nsum) .insertInto("retractSink") env.execute() val results = RowCollector.getAndClearValues val retracted = RowCollector.retractResults(results).sorted val expected = List( "2,1,1", "5,1,2", "11,1,2", "25,1,3", "10,7,39", "14,1,3", "9,9,41").sorted assertEquals(expected, retracted) } @Test def testRetractSinkOnAppendTable(): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment env.getConfig.enableObjectReuse() env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) val tEnv = TableEnvironment.getTableEnvironment(env) val t = StreamTestData.get3TupleDataStream(env) .assignAscendingTimestamps(_._1.toLong) .toTable(tEnv, 'id, 'num, 'text, 'rowtime.rowtime) tEnv.registerTableSink( "retractSink", new TestRetractSink().configure( Array[String]("t", "icnt", "nsum"), Array[TypeInformation[_]](Types.SQL_TIMESTAMP, Types.LONG, Types.LONG))) t.window(Tumble over 5.millis on 'rowtime as 'w) .groupBy('w) .select('w.end as 't, 'id.count as 'icnt, 'num.sum as 'nsum) .insertInto("retractSink") env.execute() val results = RowCollector.getAndClearValues assertFalse( "Received retraction messages for append only table", results.exists(!_.f0)) val retracted = RowCollector.retractResults(results).sorted val expected = List( "1970-01-01 00:00:00.005,4,8", "1970-01-01 00:00:00.01,5,18", "1970-01-01 00:00:00.015,5,24", "1970-01-01 00:00:00.02,5,29", "1970-01-01 00:00:00.025,2,12") .sorted assertEquals(expected, retracted) } @Test def testUpsertSinkOnUpdatingTableWithFullKey(): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment env.getConfig.enableObjectReuse() env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) val tEnv = TableEnvironment.getTableEnvironment(env) val t = StreamTestData.get3TupleDataStream(env) .assignAscendingTimestamps(_._1.toLong) .toTable(tEnv, 'id, 'num, 'text) tEnv.registerTableSink( "upsertSink", new TestUpsertSink(Array("cnt", "cTrue"), false).configure( Array[String]("cnt", "lencnt", "cTrue"), Array[TypeInformation[_]](Types.LONG, Types.LONG, Types.BOOLEAN))) t.select('id, 'num, 'text.charLength() as 'len, ('id > 0) as 'cTrue) .groupBy('len, 'cTrue) .select('len, 'id.count as 'cnt, 'cTrue) .groupBy('cnt, 'cTrue) .select('cnt, 'len.count as 'lencnt, 'cTrue) .insertInto("upsertSink") env.execute() val results = RowCollector.getAndClearValues assertTrue( "Results must include delete messages", results.exists(_.f0 == false) ) val retracted = RowCollector.upsertResults(results, Array(0, 2)).sorted val expected = List( "1,5,true", "7,1,true", "9,1,true").sorted assertEquals(expected, retracted) } @Test def testUpsertSinkOnAppendingTableWithFullKey1(): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment env.getConfig.enableObjectReuse() env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) val tEnv = TableEnvironment.getTableEnvironment(env) val t = StreamTestData.get3TupleDataStream(env) .assignAscendingTimestamps(_._1.toLong) .toTable(tEnv, 'id, 'num, 'text, 'rowtime.rowtime) tEnv.registerTableSink( "upsertSink", new TestUpsertSink(Array("wend", "num"), true).configure( Array[String]("num", "wend", "icnt"), Array[TypeInformation[_]](Types.LONG, Types.SQL_TIMESTAMP, Types.LONG))) t.window(Tumble over 5.millis on 'rowtime as 'w) .groupBy('w, 'num) .select('num, 'w.end as 'wend, 'id.count as 'icnt) .insertInto("upsertSink") env.execute() val results = RowCollector.getAndClearValues assertFalse( "Received retraction messages for append only table", results.exists(!_.f0)) val retracted = RowCollector.upsertResults(results, Array(0, 1, 2)).sorted val expected = List( "1,1970-01-01 00:00:00.005,1", "2,1970-01-01 00:00:00.005,2", "3,1970-01-01 00:00:00.005,1", "3,1970-01-01 00:00:00.01,2", "4,1970-01-01 00:00:00.01,3", "4,1970-01-01 00:00:00.015,1", "5,1970-01-01 00:00:00.015,4", "5,1970-01-01 00:00:00.02,1", "6,1970-01-01 00:00:00.02,4", "6,1970-01-01 00:00:00.025,2").sorted assertEquals(expected, retracted) } @Test def testUpsertSinkOnAppendingTableWithFullKey2(): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment env.getConfig.enableObjectReuse() env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) val tEnv = TableEnvironment.getTableEnvironment(env) val t = StreamTestData.get3TupleDataStream(env) .assignAscendingTimestamps(_._1.toLong) .toTable(tEnv, 'id, 'num, 'text, 'rowtime.rowtime) tEnv.registerTableSink( "upsertSink", new TestUpsertSink(Array("wstart", "wend", "num"), true).configure( Array[String]("wstart", "wend", "num", "icnt"), Array[TypeInformation[_]] (Types.SQL_TIMESTAMP, Types.SQL_TIMESTAMP, Types.LONG, Types.LONG))) t.window(Tumble over 5.millis on 'rowtime as 'w) .groupBy('w, 'num) .select('w.start as 'wstart, 'w.end as 'wend, 'num, 'id.count as 'icnt) .insertInto("upsertSink") env.execute() val results = RowCollector.getAndClearValues assertFalse( "Received retraction messages for append only table", results.exists(!_.f0)) val retracted = RowCollector.upsertResults(results, Array(0, 1, 2)).sorted val expected = List( "1970-01-01 00:00:00.0,1970-01-01 00:00:00.005,1,1", "1970-01-01 00:00:00.0,1970-01-01 00:00:00.005,2,2", "1970-01-01 00:00:00.0,1970-01-01 00:00:00.005,3,1", "1970-01-01 00:00:00.005,1970-01-01 00:00:00.01,3,2", "1970-01-01 00:00:00.005,1970-01-01 00:00:00.01,4,3", "1970-01-01 00:00:00.01,1970-01-01 00:00:00.015,4,1", "1970-01-01 00:00:00.01,1970-01-01 00:00:00.015,5,4", "1970-01-01 00:00:00.015,1970-01-01 00:00:00.02,5,1", "1970-01-01 00:00:00.015,1970-01-01 00:00:00.02,6,4", "1970-01-01 00:00:00.02,1970-01-01 00:00:00.025,6,2").sorted assertEquals(expected, retracted) } @Test def testUpsertSinkOnAppendingTableWithoutFullKey1(): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment env.getConfig.enableObjectReuse() env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) val tEnv = TableEnvironment.getTableEnvironment(env) val t = StreamTestData.get3TupleDataStream(env) .assignAscendingTimestamps(_._1.toLong) .toTable(tEnv, 'id, 'num, 'text, 'rowtime.rowtime) tEnv.registerTableSink( "upsertSink", new TestUpsertSink(null, true).configure( Array[String]("wend", "cnt"), Array[TypeInformation[_]](Types.SQL_TIMESTAMP, Types.LONG))) t.window(Tumble over 5.millis on 'rowtime as 'w) .groupBy('w, 'num) .select('w.end as 'wend, 'id.count as 'cnt) .insertInto("upsertSink") env.execute() val results = RowCollector.getAndClearValues assertFalse( "Received retraction messages for append only table", results.exists(!_.f0)) val retracted = results.map(_.f1.toString).sorted val expected = List( "1970-01-01 00:00:00.005,1", "1970-01-01 00:00:00.005,2", "1970-01-01 00:00:00.005,1", "1970-01-01 00:00:00.01,2", "1970-01-01 00:00:00.01,3", "1970-01-01 00:00:00.015,1", "1970-01-01 00:00:00.015,4", "1970-01-01 00:00:00.02,1", "1970-01-01 00:00:00.02,4", "1970-01-01 00:00:00.025,2").sorted assertEquals(expected, retracted) } @Test def testUpsertSinkOnAppendingTableWithoutFullKey2(): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment env.getConfig.enableObjectReuse() env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) val tEnv = TableEnvironment.getTableEnvironment(env) val t = StreamTestData.get3TupleDataStream(env) .assignAscendingTimestamps(_._1.toLong) .toTable(tEnv, 'id, 'num, 'text, 'rowtime.rowtime) tEnv.registerTableSink( "upsertSink", new TestUpsertSink(null, true).configure( Array[String]("num", "cnt"), Array[TypeInformation[_]](Types.LONG, Types.LONG))) t.window(Tumble over 5.millis on 'rowtime as 'w) .groupBy('w, 'num) .select('num, 'id.count as 'cnt) .insertInto("upsertSink") env.execute() val results = RowCollector.getAndClearValues assertFalse( "Received retraction messages for append only table", results.exists(!_.f0)) val retracted = results.map(_.f1.toString).sorted val expected = List( "1,1", "2,2", "3,1", "3,2", "4,3", "4,1", "5,4", "5,1", "6,4", "6,2").sorted assertEquals(expected, retracted) } @Test def testToAppendStreamRowtime(): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment env.getConfig.enableObjectReuse() env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) val tEnv = TableEnvironment.getTableEnvironment(env) StreamITCase.clear val t = StreamTestData.get3TupleDataStream(env) .assignAscendingTimestamps(_._1.toLong) .toTable(tEnv, 'id, 'num, 'text, 'rowtime.rowtime) val r = t .window(Tumble over 5.milli on 'rowtime as 'w) .groupBy('num, 'w) .select('num, 'w.rowtime, 'w.rowtime.cast(Types.LONG)) r.toAppendStream[Row] .process(new ProcessFunction[Row, Row] { override def processElement( row: Row, ctx: ProcessFunction[Row, Row]#Context, out: Collector[Row]): Unit = { val rowTS: Long = row.getField(2).asInstanceOf[Long] if (ctx.timestamp() == rowTS) { out.collect(row) } } }).addSink(new StreamITCase.StringSink[Row]) env.execute() val expected = List( "1,1970-01-01 00:00:00.004,4", "2,1970-01-01 00:00:00.004,4", "3,1970-01-01 00:00:00.004,4", "3,1970-01-01 00:00:00.009,9", "4,1970-01-01 00:00:00.009,9", "4,1970-01-01 00:00:00.014,14", "5,1970-01-01 00:00:00.014,14", "5,1970-01-01 00:00:00.019,19", "6,1970-01-01 00:00:00.019,19", "6,1970-01-01 00:00:00.024,24") assertEquals(expected, StreamITCase.testResults.sorted) } @Test def testToRetractStreamRowtime(): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) val tEnv = TableEnvironment.getTableEnvironment(env) StreamITCase.clear val t = StreamTestData.get3TupleDataStream(env) .assignAscendingTimestamps(_._1.toLong) .toTable(tEnv, 'id, 'num, 'text, 'rowtime.rowtime) val r = t .window(Tumble over 5.milli on 'rowtime as 'w) .groupBy('num, 'w) .select('num, 'w.rowtime, 'w.rowtime.cast(Types.LONG)) r.toRetractStream[Row] .process(new ProcessFunction[(Boolean, Row), Row] { override def processElement( row: (Boolean, Row), ctx: ProcessFunction[(Boolean, Row), Row]#Context, out: Collector[Row]): Unit = { val rowTs = row._2.getField(2).asInstanceOf[Long] if (ctx.timestamp() == rowTs) { out.collect(row._2) } } }).addSink(new StreamITCase.StringSink[Row]) env.execute() val expected = List( "1,1970-01-01 00:00:00.004,4", "2,1970-01-01 00:00:00.004,4", "3,1970-01-01 00:00:00.004,4", "3,1970-01-01 00:00:00.009,9", "4,1970-01-01 00:00:00.009,9", "4,1970-01-01 00:00:00.014,14", "5,1970-01-01 00:00:00.014,14", "5,1970-01-01 00:00:00.019,19", "6,1970-01-01 00:00:00.019,19", "6,1970-01-01 00:00:00.024,24") assertEquals(expected, StreamITCase.testResults.sorted) } @Test(expected = classOf[TableException]) def testToAppendStreamMultiRowtime(): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment env.getConfig.enableObjectReuse() env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) val tEnv = TableEnvironment.getTableEnvironment(env) val t = StreamTestData.get3TupleDataStream(env) .assignAscendingTimestamps(_._1.toLong) .toTable(tEnv, 'id, 'num, 'text, 'rowtime.rowtime) val r = t .window(Tumble over 5.milli on 'rowtime as 'w) .groupBy('num, 'w) .select('num, 'w.rowtime, 'w.rowtime as 'rowtime2) r.toAppendStream[Row] } @Test(expected = classOf[TableException]) def testToRetractStreamMultiRowtime(): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment env.getConfig.enableObjectReuse() env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) val tEnv = TableEnvironment.getTableEnvironment(env) val t = StreamTestData.get3TupleDataStream(env) .assignAscendingTimestamps(_._1.toLong) .toTable(tEnv, 'id, 'num, 'text, 'rowtime.rowtime) val r = t .window(Tumble over 5.milli on 'rowtime as 'w) .groupBy('num, 'w) .select('num, 'w.rowtime, 'w.rowtime as 'rowtime2) r.toRetractStream[Row] } } private[flink] class TestAppendSink extends AppendStreamTableSink[Row] { var fNames: Array[String] = _ var fTypes: Array[TypeInformation[_]] = _ override def emitDataStream(s: DataStream[Row]): Unit = { s.map( new MapFunction[Row, JTuple2[JBool, Row]] { override def map(value: Row): JTuple2[JBool, Row] = new JTuple2(true, value) }) .addSink(new RowSink) } override def getOutputType: TypeInformation[Row] = new RowTypeInfo(fTypes, fNames) override def getFieldNames: Array[String] = fNames override def getFieldTypes: Array[TypeInformation[_]] = fTypes override def configure( fieldNames: Array[String], fieldTypes: Array[TypeInformation[_]]): TableSink[Row] = { val copy = new TestAppendSink copy.fNames = fieldNames copy.fTypes = fieldTypes copy } } private[flink] class TestRetractSink extends RetractStreamTableSink[Row] { var fNames: Array[String] = _ var fTypes: Array[TypeInformation[_]] = _ override def emitDataStream(s: DataStream[JTuple2[JBool, Row]]): Unit = { s.addSink(new RowSink) } override def getRecordType: TypeInformation[Row] = new RowTypeInfo(fTypes, fNames) override def getFieldNames: Array[String] = fNames override def getFieldTypes: Array[TypeInformation[_]] = fTypes override def configure( fieldNames: Array[String], fieldTypes: Array[TypeInformation[_]]): TableSink[JTuple2[JBool, Row]] = { val copy = new TestRetractSink copy.fNames = fieldNames copy.fTypes = fieldTypes copy } } private[flink] class TestUpsertSink( expectedKeys: Array[String], expectedIsAppendOnly: Boolean) extends UpsertStreamTableSink[Row] { var fNames: Array[String] = _ var fTypes: Array[TypeInformation[_]] = _ override def setKeyFields(keys: Array[String]): Unit = if (keys != null) { assertEquals("Provided key fields do not match expected keys", expectedKeys.sorted.mkString(","), keys.sorted.mkString(",")) } else { assertNull("Provided key fields should not be null.", expectedKeys) } override def setIsAppendOnly(isAppendOnly: JBool): Unit = assertEquals( "Provided isAppendOnly does not match expected isAppendOnly", expectedIsAppendOnly, isAppendOnly) override def getRecordType: TypeInformation[Row] = new RowTypeInfo(fTypes, fNames) override def emitDataStream(s: DataStream[JTuple2[JBool, Row]]): Unit = { s.addSink(new RowSink) } override def getFieldNames: Array[String] = fNames override def getFieldTypes: Array[TypeInformation[_]] = fTypes override def configure( fieldNames: Array[String], fieldTypes: Array[TypeInformation[_]]): TableSink[JTuple2[JBool, Row]] = { val copy = new TestUpsertSink(expectedKeys, expectedIsAppendOnly) copy.fNames = fieldNames copy.fTypes = fieldTypes copy } } class RowSink extends SinkFunction[JTuple2[JBool, Row]] { override def invoke(value: JTuple2[JBool, Row]): Unit = RowCollector.addValue(value) } object RowCollector { private val sink: mutable.ArrayBuffer[JTuple2[JBool, Row]] = new mutable.ArrayBuffer[JTuple2[JBool, Row]]() def addValue(value: JTuple2[JBool, Row]): Unit = { // make a copy val copy = new JTuple2[JBool, Row](value.f0, Row.copy(value.f1)) sink.synchronized { sink += copy } } def getAndClearValues: List[JTuple2[JBool, Row]] = { val out = sink.toList sink.clear() out } /** Converts a list of retraction messages into a list of final results. */ def retractResults(results: List[JTuple2[JBool, Row]]): List[String] = { val retracted = results .foldLeft(Map[String, Int]()){ (m: Map[String, Int], v: JTuple2[JBool, Row]) => val cnt = m.getOrElse(v.f1.toString, 0) if (v.f0) { m + (v.f1.toString -> (cnt + 1)) } else { m + (v.f1.toString -> (cnt - 1)) } }.filter{ case (_, c: Int) => c != 0 } assertFalse( "Received retracted rows which have not been accumulated.", retracted.exists{ case (_, c: Int) => c < 0}) retracted.flatMap { case (r: String, c: Int) => (0 until c).map(_ => r) }.toList } /** Converts a list of upsert messages into a list of final results. */ def upsertResults(results: List[JTuple2[JBool, Row]], keys: Array[Int]): List[String] = { def getKeys(r: Row): Row = Row.project(r, keys) val upserted = results.foldLeft(Map[Row, String]()){ (o: Map[Row, String], r) => val key = getKeys(r.f1) if (r.f0) { o + (key -> r.f1.toString) } else { o - key } } upserted.values.toList } }
mylog00/flink
flink-libraries/flink-table/src/test/scala/org/apache/flink/table/runtime/stream/table/TableSinkITCase.scala
Scala
apache-2.0
25,742
import org.apache.spark._ import org.apache.spark.sql.SQLContext import org.apache.spark.mllib.feature.HashingTF import org.apache.spark.mllib.clustering.KMeans object Main { def main(args: Array[String]) { val conf = new SparkConf().setAppName("test").setMaster("local[*]") val sc = new SparkContext(conf) val sqlCtx = new SQLContext(sc) val input = sqlCtx.jsonFile("../data/tweets/*/*") input.registerTempTable("tweets") val texts = sqlCtx.sql("SELECT text FROM tweets").map(_.getString(0)) val tf = new HashingTF(1000) def featurize(s: String) = tf.transform(s.sliding(2).toSeq) val vectors = texts.map(featurize).cache val model = KMeans.train(vectors, 10, 100) val groups = texts.groupBy(t => model.predict(featurize(t))) groups.foreach(println) model.predict(featurize("test")) } }
OmniaGM/spark-training
examples/twitter/scala/Main.scala
Scala
mit
893
/* __ *\\ ** ________ ___ / / ___ Scala API ** ** / __/ __// _ | / / / _ | (c) 2003-2010, LAMP/EPFL ** ** __\\ \\/ /__/ __ |/ /__/ __ | ** ** /____/\\___/_/ |_/____/_/ | | ** ** |/ ** \\* */ package scala.util.logging /** * The trait <code>ConsoleLogger</code> is mixed into a concrete class who * has class <code>Logged</code> among its base classes. * * @author Burak Emir * @version 1.0 */ trait ConsoleLogger extends Logged { /** logs argument to Console using <code>Console.println</code> */ override def log(msg: String): Unit = Console.println(msg) }
cran/rkafkajars
java/scala/util/logging/ConsoleLogger.scala
Scala
apache-2.0
915
import org.apache.hadoop.conf.Configuration import org.apache.spark. { SparkContext, SparkConf } import org.apache.spark.rdd.RDD import com.mongodb.MongoClient import org.bson.BSONObject import com.mongodb.hadoop. { MongoInputFormat, MongoOutputFormat, BSONFileInputFormat, BSONFileOutputFormat } import com.mongodb.hadoop.io.MongoUpdateWritable import java.io._ import com.cloudera.datascience.lsa._ import com.cloudera.datascience.lsa.ParseWikipedia._ import com.cloudera.datascience.lsa.RunLSA._ import org.apache.spark.rdd.EmptyRDD import scala.collection.mutable.ListBuffer import org.apache.spark.mllib.linalg._ import org.apache.spark.mllib.linalg.distributed.RowMatrix import breeze.linalg. { DenseMatrix => BDenseMatrix, DenseVector => BDenseVector, SparseVector => BSparseVector } import org.apache.spark.mllib.regression._ import org.apache.spark.rdd._ //Access mongodb var client = new MongoClient("localhost", 27017) var db = client.getDatabase("cordis") //Chargement des données depuis mongodb @transient val mongoConfig = new Configuration() mongoConfig.set("mongo.input.uri", "mongodb://localhost:27017/cordis.project") val documents = sc.newAPIHadoopRDD( mongoConfig, // Configuration classOf[MongoInputFormat], // InputFormat classOf[Object], // Key type classOf[BSONObject]) // Value type //chargement des stop words val stopWords = sc.broadcast(ParseWikipedia.loadStopWords("deps/lsa/src/main/resources/stopwords.txt")).value //Lemmatization var lemmatized = documents.map(s => (s._2.get("_id").toString, ParseWikipedia.plainTextToLemmas(s._2.get("objective").toString, stopWords, ParseWikipedia.createNLPPipeline()))) //liste des mots var words = lemmatized.map(a => Set(a._2: _ * )).reduce((a, b) => (a++b)) val numTerms = 1000 // nombre de terme val k = 100 // nombre de valeurs singuliers à garder val nbConcept = 30 //Nombre de concept //on filtre les mots de moins de deux caractères val filtered = lemmatized.filter(_._2.size > 1) val documentSize = documents.collect().length println("Documents Size : " + documentSize) println("Number of Terms : " + numTerms) val(termDocMatrix, termIds, docIds, idfs) = ParseWikipedia.termDocumentMatrix(filtered, stopWords, numTerms, sc) //nettoyage des collections db.getCollection("projetIdfs").drop() db.getCollection("projetTermDocMatrix").drop() db.getCollection("projetTermIds").drop() db.getCollection("projetDocIds").drop() //sauvegarde des tf-idf val outputConfig = new Configuration() outputConfig.set("mongo.output.uri", "mongodb://localhost:27017/cordis.projetIdfs") sc.parallelize(idfs.toSeq).saveAsNewAPIHadoopFile("file:///this-is-completely-unused", classOf[Object], classOf[BSONObject], classOf[MongoOutputFormat[Object, BSONObject]], outputConfig) outputConfig.set("mongo.output.uri", "mongodb://localhost:27017/cordis.projetTermDocMatrix") termDocMatrix.zipWithIndex().map(a => (a._2, a._1.toArray)).saveAsNewAPIHadoopFile("file:///this-is-completely-unused", classOf[Object], classOf[BSONObject], classOf[MongoOutputFormat[Object, BSONObject]], outputConfig) outputConfig.set("mongo.output.uri", "mongodb://localhost:27017/cordis.projetTermIds") sc.parallelize(termIds.toSeq).saveAsNewAPIHadoopFile("file:///this-is-completely-unused", classOf[Object], classOf[BSONObject], classOf[MongoOutputFormat[Object, BSONObject]], outputConfig) outputConfig.set("mongo.output.uri", "mongodb://localhost:27017/cordis.projetDocIds") sc.parallelize(docIds.toSeq).saveAsNewAPIHadoopFile("file:///this-is-completely-unused", classOf[Object], classOf[BSONObject], classOf[MongoOutputFormat[Object, BSONObject]], outputConfig) val mat = new RowMatrix(termDocMatrix) /* Calcul de la décomposition en valeurs singulières */ val svd = mat.computeSVD(k, computeU = true) /* resultats par termes */ val topConceptTerms = RunLSA.topTermsInTopConcepts(svd, nbConcept, numTerms, termIds) /* résultats par document */ val topConceptDocs = RunLSA.topDocsInTopConcepts(svd, nbConcept, documentSize, docIds) var all = sc.emptyRDD[(String, Double)] import collection.mutable.HashMap val docConcept = new HashMap[String, ListBuffer[Double]]() var count = 0 for (a <-topConceptDocs) { count += 1 for ((b, c) <-a) { if (!docConcept.contains(b)) { docConcept.put(b, new ListBuffer[Double]()) } docConcept(b) += c } for ((k, v) <-docConcept) { while (v.size < count) { v += 0.0 } } } var docConceptRDD = sc.parallelize(docConcept.toSeq) var toWrite = docConceptRDD.map(a => (a._1, a._2.toArray)) /*Sauvegarde dans Mongo DB*/ db.getCollection("projetDocConcept").drop() val outputConfig = new Configuration() outputConfig.set("mongo.output.uri", "mongodb://localhost:27017/cordis.projetDocConcept") toWrite.saveAsNewAPIHadoopFile( "file:///this-is-completely-unused", classOf[Object], classOf[BSONObject], classOf[MongoOutputFormat[Object, BSONObject]], outputConfig) //make labeled point val termConcept = new HashMap[String, ListBuffer[Double]]() count = 0 for (a <-topConceptTerms) { count += 1 for ((b, c) <-a) { if (!termConcept.contains(b)) { termConcept.put(b, new ListBuffer[Double]()) } termConcept(b) += c } for ((k, v) <-termConcept) { while (v.size < count) { v += 0.0 } } } db.getCollection("projetTermConcept").drop() var parr = sc.parallelize(termConcept.toSeq) val outputConfig = new Configuration() outputConfig.set("mongo.output.uri", "mongodb://localhost:27017/cordis.projetTermConcept") parr.map(a => (a._1, a._2.toArray)).coalesce(1, true).saveAsNewAPIHadoopFile("file:///this-is-completely-unused", classOf[Object], classOf[BSONObject], classOf[MongoOutputFormat[Object, BSONObject]], outputConfig) exit
StatisticalProject/CORDIR
makeLSA.scala
Scala
apache-2.0
5,675
import java.io.File import testgen.TestSuiteBuilder.{toString, _} import testgen._ object FlattenArrayTestGenerator { def main(args: Array[String]): Unit = { val file = new File("src/main/resources/flatten-array.json") def sutArgsFromInput(parseResult: CanonicalDataParser.ParseResult, argNames: String*): String = argNames map (name => toArgString(parseResult("input").asInstanceOf[Map[String, Any]](name))) mkString ", " def toArgString(any: Any): String = { any match { case xs: List[Any] => s"List(${xs.map(x => toArgString(x)).mkString(", ")})" case null => "null" case _ => any.toString } } def toExpectedString(expected: CanonicalDataParser.Expected): String = { expected match { case Left(_) => throw new IllegalStateException() case Right(xs: List[Any]) => s"List(${xs.mkString(", ")})" } } def fromLabeledTestFromInput(argNames: String*): ToTestCaseData = withLabeledTest { sut => labeledTest => val args = sutArgsFromInput(labeledTest.result, argNames: _*) val property = labeledTest.property val sutCall = s"""$sut.$property($args)""" val expected = toExpectedString(labeledTest.expected) TestCaseData(labeledTest.description, sutCall, expected) } val code = TestSuiteBuilder.build(file, fromLabeledTestFromInput("array")) println(s"-------------") println(code) println(s"-------------") } }
ricemery/xscala
testgen/src/main/scala/FlattenArrayTestGenerator.scala
Scala
mit
1,512
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.api.java import java.{lang => jl} import java.lang.{Iterable => JIterable} import java.util.{Comparator, Iterator => JIterator, List => JList} import scala.collection.JavaConverters._ import scala.language.implicitConversions import scala.reflect.ClassTag import org.apache.hadoop.conf.Configuration import org.apache.hadoop.io.compress.CompressionCodec import org.apache.hadoop.mapred.{JobConf, OutputFormat} import org.apache.hadoop.mapreduce.{OutputFormat => NewOutputFormat} import org.apache.spark.{HashPartitioner, Partitioner} import org.apache.spark.Partitioner._ import org.apache.spark.api.java.JavaSparkContext.fakeClassTag import org.apache.spark.api.java.JavaUtils.mapAsSerializableJavaMap import org.apache.spark.api.java.function.{FlatMapFunction, Function => JFunction, Function2 => JFunction2, PairFunction} import org.apache.spark.partial.{BoundedDouble, PartialResult} import org.apache.spark.rdd.{OrderedRDDFunctions, RDD} import org.apache.spark.rdd.RDD.rddToPairRDDFunctions import org.apache.spark.serializer.Serializer import org.apache.spark.storage.StorageLevel import org.apache.spark.util.Utils class JavaPairRDD[K, V](val rdd: RDD[(K, V)]) (implicit val kClassTag: ClassTag[K], implicit val vClassTag: ClassTag[V]) extends AbstractJavaRDDLike[(K, V), JavaPairRDD[K, V]] { override def wrapRDD(rdd: RDD[(K, V)]): JavaPairRDD[K, V] = JavaPairRDD.fromRDD(rdd) override val classTag: ClassTag[(K, V)] = rdd.elementClassTag import JavaPairRDD._ // Common RDD functions /** * Persist this RDD with the default storage level (`MEMORY_ONLY`). */ def cache(): JavaPairRDD[K, V] = new JavaPairRDD[K, V](rdd.cache()) /** * Set this RDD's storage level to persist its values across operations after the first time * it is computed. Can only be called once on each RDD. */ def persist(newLevel: StorageLevel): JavaPairRDD[K, V] = new JavaPairRDD[K, V](rdd.persist(newLevel)) /** * Mark the RDD as non-persistent, and remove all blocks for it from memory and disk. * This method blocks until all blocks are deleted. */ def unpersist(): JavaPairRDD[K, V] = wrapRDD(rdd.unpersist()) /** * Mark the RDD as non-persistent, and remove all blocks for it from memory and disk. * * @param blocking Whether to block until all blocks are deleted. */ def unpersist(blocking: Boolean): JavaPairRDD[K, V] = wrapRDD(rdd.unpersist(blocking)) // Transformations (return a new RDD) /** * Return a new RDD containing the distinct elements in this RDD. */ def distinct(): JavaPairRDD[K, V] = new JavaPairRDD[K, V](rdd.distinct()) /** * Return a new RDD containing the distinct elements in this RDD. */ def distinct(numPartitions: Int): JavaPairRDD[K, V] = new JavaPairRDD[K, V](rdd.distinct(numPartitions)) /** * Return a new RDD containing only the elements that satisfy a predicate. */ def filter(f: JFunction[(K, V), java.lang.Boolean]): JavaPairRDD[K, V] = new JavaPairRDD[K, V](rdd.filter(x => f.call(x).booleanValue())) /** * Return a new RDD that is reduced into `numPartitions` partitions. */ def coalesce(numPartitions: Int): JavaPairRDD[K, V] = fromRDD(rdd.coalesce(numPartitions)) /** * Return a new RDD that is reduced into `numPartitions` partitions. */ def coalesce(numPartitions: Int, shuffle: Boolean): JavaPairRDD[K, V] = fromRDD(rdd.coalesce(numPartitions, shuffle)) /** * Return a new RDD that has exactly numPartitions partitions. * * Can increase or decrease the level of parallelism in this RDD. Internally, this uses * a shuffle to redistribute data. * * If you are decreasing the number of partitions in this RDD, consider using `coalesce`, * which can avoid performing a shuffle. */ def repartition(numPartitions: Int): JavaPairRDD[K, V] = fromRDD(rdd.repartition(numPartitions)) /** * Return a sampled subset of this RDD. */ def sample(withReplacement: Boolean, fraction: Double): JavaPairRDD[K, V] = sample(withReplacement, fraction, Utils.random.nextLong) /** * Return a sampled subset of this RDD. */ def sample(withReplacement: Boolean, fraction: Double, seed: Long): JavaPairRDD[K, V] = new JavaPairRDD[K, V](rdd.sample(withReplacement, fraction, seed)) /** * Return a subset of this RDD sampled by key (via stratified sampling). * * Create a sample of this RDD using variable sampling rates for different keys as specified by * `fractions`, a key to sampling rate map, via simple random sampling with one pass over the * RDD, to produce a sample of size that's approximately equal to the sum of * math.ceil(numItems * samplingRate) over all key values. */ def sampleByKey(withReplacement: Boolean, fractions: java.util.Map[K, jl.Double], seed: Long): JavaPairRDD[K, V] = new JavaPairRDD[K, V](rdd.sampleByKey( withReplacement, fractions.asScala.mapValues(_.toDouble).toMap, // map to Scala Double; toMap to serialize seed)) /** * Return a subset of this RDD sampled by key (via stratified sampling). * * Create a sample of this RDD using variable sampling rates for different keys as specified by * `fractions`, a key to sampling rate map, via simple random sampling with one pass over the * RDD, to produce a sample of size that's approximately equal to the sum of * math.ceil(numItems * samplingRate) over all key values. * * Use Utils.random.nextLong as the default seed for the random number generator. */ def sampleByKey(withReplacement: Boolean, fractions: java.util.Map[K, jl.Double]): JavaPairRDD[K, V] = sampleByKey(withReplacement, fractions, Utils.random.nextLong) /** * Return a subset of this RDD sampled by key (via stratified sampling) containing exactly * math.ceil(numItems * samplingRate) for each stratum (group of pairs with the same key). * * This method differs from `sampleByKey` in that we make additional passes over the RDD to * create a sample size that's exactly equal to the sum of math.ceil(numItems * samplingRate) * over all key values with a 99.99% confidence. When sampling without replacement, we need one * additional pass over the RDD to guarantee sample size; when sampling with replacement, we need * two additional passes. */ def sampleByKeyExact(withReplacement: Boolean, fractions: java.util.Map[K, jl.Double], seed: Long): JavaPairRDD[K, V] = new JavaPairRDD[K, V](rdd.sampleByKeyExact( withReplacement, fractions.asScala.mapValues(_.toDouble).toMap, // map to Scala Double; toMap to serialize seed)) /** * Return a subset of this RDD sampled by key (via stratified sampling) containing exactly * math.ceil(numItems * samplingRate) for each stratum (group of pairs with the same key). * * This method differs from `sampleByKey` in that we make additional passes over the RDD to * create a sample size that's exactly equal to the sum of math.ceil(numItems * samplingRate) * over all key values with a 99.99% confidence. When sampling without replacement, we need one * additional pass over the RDD to guarantee sample size; when sampling with replacement, we need * two additional passes. * * Use Utils.random.nextLong as the default seed for the random number generator. */ def sampleByKeyExact( withReplacement: Boolean, fractions: java.util.Map[K, jl.Double]): JavaPairRDD[K, V] = sampleByKeyExact(withReplacement, fractions, Utils.random.nextLong) /** * Return the union of this RDD and another one. Any identical elements will appear multiple * times (use `.distinct()` to eliminate them). */ def union(other: JavaPairRDD[K, V]): JavaPairRDD[K, V] = new JavaPairRDD[K, V](rdd.union(other.rdd)) /** * Return the intersection of this RDD and another one. The output will not contain any duplicate * elements, even if the input RDDs did. * * @note This method performs a shuffle internally. */ def intersection(other: JavaPairRDD[K, V]): JavaPairRDD[K, V] = new JavaPairRDD[K, V](rdd.intersection(other.rdd)) // first() has to be overridden here so that the generated method has the signature // 'public scala.Tuple2 first()'; if the trait's definition is used, // then the method has the signature 'public java.lang.Object first()', // causing NoSuchMethodErrors at runtime. override def first(): (K, V) = rdd.first() // Pair RDD functions /** * Generic function to combine the elements for each key using a custom set of aggregation * functions. Turns a JavaPairRDD[(K, V)] into a result of type JavaPairRDD[(K, C)], for a * "combined type" C. * * Users provide three functions: * * - `createCombiner`, which turns a V into a C (e.g., creates a one-element list) * - `mergeValue`, to merge a V into a C (e.g., adds it to the end of a list) * - `mergeCombiners`, to combine two C's into a single one. * * In addition, users can control the partitioning of the output RDD, the serializer that is use * for the shuffle, and whether to perform map-side aggregation (if a mapper can produce multiple * items with the same key). * * @note V and C can be different -- for example, one might group an RDD of type (Int, Int) into * an RDD of type (Int, List[Int]). */ def combineByKey[C](createCombiner: JFunction[V, C], mergeValue: JFunction2[C, V, C], mergeCombiners: JFunction2[C, C, C], partitioner: Partitioner, mapSideCombine: Boolean, serializer: Serializer): JavaPairRDD[K, C] = { implicit val ctag: ClassTag[C] = fakeClassTag fromRDD(rdd.combineByKeyWithClassTag( createCombiner, mergeValue, mergeCombiners, partitioner, mapSideCombine, serializer )) } /** * Generic function to combine the elements for each key using a custom set of aggregation * functions. Turns a JavaPairRDD[(K, V)] into a result of type JavaPairRDD[(K, C)], for a * "combined type" C. * * Users provide three functions: * * - `createCombiner`, which turns a V into a C (e.g., creates a one-element list) * - `mergeValue`, to merge a V into a C (e.g., adds it to the end of a list) * - `mergeCombiners`, to combine two C's into a single one. * * In addition, users can control the partitioning of the output RDD. This method automatically * uses map-side aggregation in shuffling the RDD. * * @note V and C can be different -- for example, one might group an RDD of type (Int, Int) into * an RDD of type (Int, List[Int]). */ def combineByKey[C](createCombiner: JFunction[V, C], mergeValue: JFunction2[C, V, C], mergeCombiners: JFunction2[C, C, C], partitioner: Partitioner): JavaPairRDD[K, C] = { combineByKey(createCombiner, mergeValue, mergeCombiners, partitioner, true, null) } /** * Simplified version of combineByKey that hash-partitions the output RDD and uses map-side * aggregation. */ def combineByKey[C](createCombiner: JFunction[V, C], mergeValue: JFunction2[C, V, C], mergeCombiners: JFunction2[C, C, C], numPartitions: Int): JavaPairRDD[K, C] = combineByKey(createCombiner, mergeValue, mergeCombiners, new HashPartitioner(numPartitions)) /** * Merge the values for each key using an associative and commutative reduce function. This will * also perform the merging locally on each mapper before sending results to a reducer, similarly * to a "combiner" in MapReduce. */ def reduceByKey(partitioner: Partitioner, func: JFunction2[V, V, V]): JavaPairRDD[K, V] = fromRDD(rdd.reduceByKey(partitioner, func)) /** * Merge the values for each key using an associative and commutative reduce function, but return * the result immediately to the master as a Map. This will also perform the merging locally on * each mapper before sending results to a reducer, similarly to a "combiner" in MapReduce. */ def reduceByKeyLocally(func: JFunction2[V, V, V]): java.util.Map[K, V] = mapAsSerializableJavaMap(rdd.reduceByKeyLocally(func)) /** Count the number of elements for each key, and return the result to the master as a Map. */ def countByKey(): java.util.Map[K, jl.Long] = mapAsSerializableJavaMap(rdd.countByKey()).asInstanceOf[java.util.Map[K, jl.Long]] /** * Approximate version of countByKey that can return a partial result if it does * not finish within a timeout. */ def countByKeyApprox(timeout: Long): PartialResult[java.util.Map[K, BoundedDouble]] = rdd.countByKeyApprox(timeout).map(mapAsSerializableJavaMap) /** * Approximate version of countByKey that can return a partial result if it does * not finish within a timeout. */ def countByKeyApprox(timeout: Long, confidence: Double = 0.95) : PartialResult[java.util.Map[K, BoundedDouble]] = rdd.countByKeyApprox(timeout, confidence).map(mapAsSerializableJavaMap) /** * Aggregate the values of each key, using given combine functions and a neutral "zero value". * This function can return a different result type, U, than the type of the values in this RDD, * V. Thus, we need one operation for merging a V into a U and one operation for merging two U's, * as in scala.TraversableOnce. The former operation is used for merging values within a * partition, and the latter is used for merging values between partitions. To avoid memory * allocation, both of these functions are allowed to modify and return their first argument * instead of creating a new U. */ def aggregateByKey[U](zeroValue: U, partitioner: Partitioner, seqFunc: JFunction2[U, V, U], combFunc: JFunction2[U, U, U]): JavaPairRDD[K, U] = { implicit val ctag: ClassTag[U] = fakeClassTag fromRDD(rdd.aggregateByKey(zeroValue, partitioner)(seqFunc, combFunc)) } /** * Aggregate the values of each key, using given combine functions and a neutral "zero value". * This function can return a different result type, U, than the type of the values in this RDD, * V. Thus, we need one operation for merging a V into a U and one operation for merging two U's, * as in scala.TraversableOnce. The former operation is used for merging values within a * partition, and the latter is used for merging values between partitions. To avoid memory * allocation, both of these functions are allowed to modify and return their first argument * instead of creating a new U. */ def aggregateByKey[U](zeroValue: U, numPartitions: Int, seqFunc: JFunction2[U, V, U], combFunc: JFunction2[U, U, U]): JavaPairRDD[K, U] = { implicit val ctag: ClassTag[U] = fakeClassTag fromRDD(rdd.aggregateByKey(zeroValue, numPartitions)(seqFunc, combFunc)) } /** * Aggregate the values of each key, using given combine functions and a neutral "zero value". * This function can return a different result type, U, than the type of the values in this RDD, * V. Thus, we need one operation for merging a V into a U and one operation for merging two U's. * The former operation is used for merging values within a partition, and the latter is used for * merging values between partitions. To avoid memory allocation, both of these functions are * allowed to modify and return their first argument instead of creating a new U. */ def aggregateByKey[U](zeroValue: U, seqFunc: JFunction2[U, V, U], combFunc: JFunction2[U, U, U]): JavaPairRDD[K, U] = { implicit val ctag: ClassTag[U] = fakeClassTag fromRDD(rdd.aggregateByKey(zeroValue)(seqFunc, combFunc)) } /** * Merge the values for each key using an associative function and a neutral "zero value" which * may be added to the result an arbitrary number of times, and must not change the result * (e.g ., Nil for list concatenation, 0 for addition, or 1 for multiplication.). */ def foldByKey(zeroValue: V, partitioner: Partitioner, func: JFunction2[V, V, V]) : JavaPairRDD[K, V] = fromRDD(rdd.foldByKey(zeroValue, partitioner)(func)) /** * Merge the values for each key using an associative function and a neutral "zero value" which * may be added to the result an arbitrary number of times, and must not change the result * (e.g ., Nil for list concatenation, 0 for addition, or 1 for multiplication.). */ def foldByKey(zeroValue: V, numPartitions: Int, func: JFunction2[V, V, V]): JavaPairRDD[K, V] = fromRDD(rdd.foldByKey(zeroValue, numPartitions)(func)) /** * Merge the values for each key using an associative function and a neutral "zero value" * which may be added to the result an arbitrary number of times, and must not change the result * (e.g., Nil for list concatenation, 0 for addition, or 1 for multiplication.). */ def foldByKey(zeroValue: V, func: JFunction2[V, V, V]): JavaPairRDD[K, V] = fromRDD(rdd.foldByKey(zeroValue)(func)) /** * Merge the values for each key using an associative and commutative reduce function. This will * also perform the merging locally on each mapper before sending results to a reducer, similarly * to a "combiner" in MapReduce. Output will be hash-partitioned with numPartitions partitions. */ def reduceByKey(func: JFunction2[V, V, V], numPartitions: Int): JavaPairRDD[K, V] = fromRDD(rdd.reduceByKey(func, numPartitions)) /** * Group the values for each key in the RDD into a single sequence. Allows controlling the * partitioning of the resulting key-value pair RDD by passing a Partitioner. * * @note If you are grouping in order to perform an aggregation (such as a sum or average) over * each key, using `JavaPairRDD.reduceByKey` or `JavaPairRDD.combineByKey` * will provide much better performance. */ def groupByKey(partitioner: Partitioner): JavaPairRDD[K, JIterable[V]] = fromRDD(groupByResultToJava(rdd.groupByKey(partitioner))) /** * Group the values for each key in the RDD into a single sequence. Hash-partitions the * resulting RDD with into `numPartitions` partitions. * * @note If you are grouping in order to perform an aggregation (such as a sum or average) over * each key, using `JavaPairRDD.reduceByKey` or `JavaPairRDD.combineByKey` * will provide much better performance. */ def groupByKey(numPartitions: Int): JavaPairRDD[K, JIterable[V]] = fromRDD(groupByResultToJava(rdd.groupByKey(numPartitions))) /** * Return an RDD with the elements from `this` that are not in `other`. * * Uses `this` partitioner/partition size, because even if `other` is huge, the resulting * RDD will be &lt;= us. */ def subtract(other: JavaPairRDD[K, V]): JavaPairRDD[K, V] = fromRDD(rdd.subtract(other)) /** * Return an RDD with the elements from `this` that are not in `other`. */ def subtract(other: JavaPairRDD[K, V], numPartitions: Int): JavaPairRDD[K, V] = fromRDD(rdd.subtract(other, numPartitions)) /** * Return an RDD with the elements from `this` that are not in `other`. */ def subtract(other: JavaPairRDD[K, V], p: Partitioner): JavaPairRDD[K, V] = fromRDD(rdd.subtract(other, p)) /** * Return an RDD with the pairs from `this` whose keys are not in `other`. * * Uses `this` partitioner/partition size, because even if `other` is huge, the resulting * RDD will be &lt;= us. */ def subtractByKey[W](other: JavaPairRDD[K, W]): JavaPairRDD[K, V] = { implicit val ctag: ClassTag[W] = fakeClassTag fromRDD(rdd.subtractByKey(other)) } /** * Return an RDD with the pairs from `this` whose keys are not in `other`. */ def subtractByKey[W](other: JavaPairRDD[K, W], numPartitions: Int): JavaPairRDD[K, V] = { implicit val ctag: ClassTag[W] = fakeClassTag fromRDD(rdd.subtractByKey(other, numPartitions)) } /** * Return an RDD with the pairs from `this` whose keys are not in `other`. */ def subtractByKey[W](other: JavaPairRDD[K, W], p: Partitioner): JavaPairRDD[K, V] = { implicit val ctag: ClassTag[W] = fakeClassTag fromRDD(rdd.subtractByKey(other, p)) } /** * Return a copy of the RDD partitioned using the specified partitioner. */ def partitionBy(partitioner: Partitioner): JavaPairRDD[K, V] = fromRDD(rdd.partitionBy(partitioner)) /** * Return an RDD containing all pairs of elements with matching keys in `this` and `other`. Each * pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in `this` and * (k, v2) is in `other`. Uses the given Partitioner to partition the output RDD. */ def join[W](other: JavaPairRDD[K, W], partitioner: Partitioner): JavaPairRDD[K, (V, W)] = fromRDD(rdd.join(other, partitioner)) /** * Perform a left outer join of `this` and `other`. For each element (k, v) in `this`, the * resulting RDD will either contain all pairs (k, (v, Some(w))) for w in `other`, or the * pair (k, (v, None)) if no elements in `other` have key k. Uses the given Partitioner to * partition the output RDD. */ def leftOuterJoin[W](other: JavaPairRDD[K, W], partitioner: Partitioner) : JavaPairRDD[K, (V, Optional[W])] = { val joinResult = rdd.leftOuterJoin(other, partitioner) fromRDD(joinResult.mapValues{case (v, w) => (v, JavaUtils.optionToOptional(w))}) } /** * Perform a right outer join of `this` and `other`. For each element (k, w) in `other`, the * resulting RDD will either contain all pairs (k, (Some(v), w)) for v in `this`, or the * pair (k, (None, w)) if no elements in `this` have key k. Uses the given Partitioner to * partition the output RDD. */ def rightOuterJoin[W](other: JavaPairRDD[K, W], partitioner: Partitioner) : JavaPairRDD[K, (Optional[V], W)] = { val joinResult = rdd.rightOuterJoin(other, partitioner) fromRDD(joinResult.mapValues{case (v, w) => (JavaUtils.optionToOptional(v), w)}) } /** * Perform a full outer join of `this` and `other`. For each element (k, v) in `this`, the * resulting RDD will either contain all pairs (k, (Some(v), Some(w))) for w in `other`, or * the pair (k, (Some(v), None)) if no elements in `other` have key k. Similarly, for each * element (k, w) in `other`, the resulting RDD will either contain all pairs * (k, (Some(v), Some(w))) for v in `this`, or the pair (k, (None, Some(w))) if no elements * in `this` have key k. Uses the given Partitioner to partition the output RDD. */ def fullOuterJoin[W](other: JavaPairRDD[K, W], partitioner: Partitioner) : JavaPairRDD[K, (Optional[V], Optional[W])] = { val joinResult = rdd.fullOuterJoin(other, partitioner) fromRDD(joinResult.mapValues{ case (v, w) => (JavaUtils.optionToOptional(v), JavaUtils.optionToOptional(w)) }) } /** * Simplified version of combineByKey that hash-partitions the resulting RDD using the existing * partitioner/parallelism level and using map-side aggregation. */ def combineByKey[C](createCombiner: JFunction[V, C], mergeValue: JFunction2[C, V, C], mergeCombiners: JFunction2[C, C, C]): JavaPairRDD[K, C] = { implicit val ctag: ClassTag[C] = fakeClassTag fromRDD(combineByKey(createCombiner, mergeValue, mergeCombiners, defaultPartitioner(rdd))) } /** * Merge the values for each key using an associative and commutative reduce function. This will * also perform the merging locally on each mapper before sending results to a reducer, similarly * to a "combiner" in MapReduce. Output will be hash-partitioned with the existing partitioner/ * parallelism level. */ def reduceByKey(func: JFunction2[V, V, V]): JavaPairRDD[K, V] = { fromRDD(reduceByKey(defaultPartitioner(rdd), func)) } /** * Group the values for each key in the RDD into a single sequence. Hash-partitions the * resulting RDD with the existing partitioner/parallelism level. * * @note If you are grouping in order to perform an aggregation (such as a sum or average) over * each key, using `JavaPairRDD.reduceByKey` or `JavaPairRDD.combineByKey` * will provide much better performance. */ def groupByKey(): JavaPairRDD[K, JIterable[V]] = fromRDD(groupByResultToJava(rdd.groupByKey())) /** * Return an RDD containing all pairs of elements with matching keys in `this` and `other`. Each * pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in `this` and * (k, v2) is in `other`. Performs a hash join across the cluster. */ def join[W](other: JavaPairRDD[K, W]): JavaPairRDD[K, (V, W)] = fromRDD(rdd.join(other)) /** * Return an RDD containing all pairs of elements with matching keys in `this` and `other`. Each * pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in `this` and * (k, v2) is in `other`. Performs a hash join across the cluster. */ def join[W](other: JavaPairRDD[K, W], numPartitions: Int): JavaPairRDD[K, (V, W)] = fromRDD(rdd.join(other, numPartitions)) /** * Perform a left outer join of `this` and `other`. For each element (k, v) in `this`, the * resulting RDD will either contain all pairs (k, (v, Some(w))) for w in `other`, or the * pair (k, (v, None)) if no elements in `other` have key k. Hash-partitions the output * using the existing partitioner/parallelism level. */ def leftOuterJoin[W](other: JavaPairRDD[K, W]): JavaPairRDD[K, (V, Optional[W])] = { val joinResult = rdd.leftOuterJoin(other) fromRDD(joinResult.mapValues{case (v, w) => (v, JavaUtils.optionToOptional(w))}) } /** * Perform a left outer join of `this` and `other`. For each element (k, v) in `this`, the * resulting RDD will either contain all pairs (k, (v, Some(w))) for w in `other`, or the * pair (k, (v, None)) if no elements in `other` have key k. Hash-partitions the output * into `numPartitions` partitions. */ def leftOuterJoin[W](other: JavaPairRDD[K, W], numPartitions: Int) : JavaPairRDD[K, (V, Optional[W])] = { val joinResult = rdd.leftOuterJoin(other, numPartitions) fromRDD(joinResult.mapValues{case (v, w) => (v, JavaUtils.optionToOptional(w))}) } /** * Perform a right outer join of `this` and `other`. For each element (k, w) in `other`, the * resulting RDD will either contain all pairs (k, (Some(v), w)) for v in `this`, or the * pair (k, (None, w)) if no elements in `this` have key k. Hash-partitions the resulting * RDD using the existing partitioner/parallelism level. */ def rightOuterJoin[W](other: JavaPairRDD[K, W]): JavaPairRDD[K, (Optional[V], W)] = { val joinResult = rdd.rightOuterJoin(other) fromRDD(joinResult.mapValues{case (v, w) => (JavaUtils.optionToOptional(v), w)}) } /** * Perform a right outer join of `this` and `other`. For each element (k, w) in `other`, the * resulting RDD will either contain all pairs (k, (Some(v), w)) for v in `this`, or the * pair (k, (None, w)) if no elements in `this` have key k. Hash-partitions the resulting * RDD into the given number of partitions. */ def rightOuterJoin[W](other: JavaPairRDD[K, W], numPartitions: Int) : JavaPairRDD[K, (Optional[V], W)] = { val joinResult = rdd.rightOuterJoin(other, numPartitions) fromRDD(joinResult.mapValues{case (v, w) => (JavaUtils.optionToOptional(v), w)}) } /** * Perform a full outer join of `this` and `other`. For each element (k, v) in `this`, the * resulting RDD will either contain all pairs (k, (Some(v), Some(w))) for w in `other`, or * the pair (k, (Some(v), None)) if no elements in `other` have key k. Similarly, for each * element (k, w) in `other`, the resulting RDD will either contain all pairs * (k, (Some(v), Some(w))) for v in `this`, or the pair (k, (None, Some(w))) if no elements * in `this` have key k. Hash-partitions the resulting RDD using the existing partitioner/ * parallelism level. */ def fullOuterJoin[W](other: JavaPairRDD[K, W]): JavaPairRDD[K, (Optional[V], Optional[W])] = { val joinResult = rdd.fullOuterJoin(other) fromRDD(joinResult.mapValues{ case (v, w) => (JavaUtils.optionToOptional(v), JavaUtils.optionToOptional(w)) }) } /** * Perform a full outer join of `this` and `other`. For each element (k, v) in `this`, the * resulting RDD will either contain all pairs (k, (Some(v), Some(w))) for w in `other`, or * the pair (k, (Some(v), None)) if no elements in `other` have key k. Similarly, for each * element (k, w) in `other`, the resulting RDD will either contain all pairs * (k, (Some(v), Some(w))) for v in `this`, or the pair (k, (None, Some(w))) if no elements * in `this` have key k. Hash-partitions the resulting RDD into the given number of partitions. */ def fullOuterJoin[W](other: JavaPairRDD[K, W], numPartitions: Int) : JavaPairRDD[K, (Optional[V], Optional[W])] = { val joinResult = rdd.fullOuterJoin(other, numPartitions) fromRDD(joinResult.mapValues{ case (v, w) => (JavaUtils.optionToOptional(v), JavaUtils.optionToOptional(w)) }) } /** * Return the key-value pairs in this RDD to the master as a Map. * * @note this method should only be used if the resulting data is expected to be small, as * all the data is loaded into the driver's memory. */ def collectAsMap(): java.util.Map[K, V] = mapAsSerializableJavaMap(rdd.collectAsMap()) /** * Pass each value in the key-value pair RDD through a map function without changing the keys; * this also retains the original RDD's partitioning. */ def mapValues[U](f: JFunction[V, U]): JavaPairRDD[K, U] = { implicit val ctag: ClassTag[U] = fakeClassTag fromRDD(rdd.mapValues(f)) } /** * Pass each value in the key-value pair RDD through a flatMap function without changing the * keys; this also retains the original RDD's partitioning. */ def flatMapValues[U](f: FlatMapFunction[V, U]): JavaPairRDD[K, U] = { def fn: (V) => Iterator[U] = (x: V) => f.call(x).asScala implicit val ctag: ClassTag[U] = fakeClassTag fromRDD(rdd.flatMapValues(fn)) } /** * For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the * list of values for that key in `this` as well as `other`. */ def cogroup[W](other: JavaPairRDD[K, W], partitioner: Partitioner) : JavaPairRDD[K, (JIterable[V], JIterable[W])] = fromRDD(cogroupResultToJava(rdd.cogroup(other, partitioner))) /** * For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a * tuple with the list of values for that key in `this`, `other1` and `other2`. */ def cogroup[W1, W2](other1: JavaPairRDD[K, W1], other2: JavaPairRDD[K, W2], partitioner: Partitioner): JavaPairRDD[K, (JIterable[V], JIterable[W1], JIterable[W2])] = fromRDD(cogroupResult2ToJava(rdd.cogroup(other1, other2, partitioner))) /** * For each key k in `this` or `other1` or `other2` or `other3`, * return a resulting RDD that contains a tuple with the list of values * for that key in `this`, `other1`, `other2` and `other3`. */ def cogroup[W1, W2, W3](other1: JavaPairRDD[K, W1], other2: JavaPairRDD[K, W2], other3: JavaPairRDD[K, W3], partitioner: Partitioner) : JavaPairRDD[K, (JIterable[V], JIterable[W1], JIterable[W2], JIterable[W3])] = fromRDD(cogroupResult3ToJava(rdd.cogroup(other1, other2, other3, partitioner))) /** * For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the * list of values for that key in `this` as well as `other`. */ def cogroup[W](other: JavaPairRDD[K, W]): JavaPairRDD[K, (JIterable[V], JIterable[W])] = fromRDD(cogroupResultToJava(rdd.cogroup(other))) /** * For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a * tuple with the list of values for that key in `this`, `other1` and `other2`. */ def cogroup[W1, W2](other1: JavaPairRDD[K, W1], other2: JavaPairRDD[K, W2]) : JavaPairRDD[K, (JIterable[V], JIterable[W1], JIterable[W2])] = fromRDD(cogroupResult2ToJava(rdd.cogroup(other1, other2))) /** * For each key k in `this` or `other1` or `other2` or `other3`, * return a resulting RDD that contains a tuple with the list of values * for that key in `this`, `other1`, `other2` and `other3`. */ def cogroup[W1, W2, W3](other1: JavaPairRDD[K, W1], other2: JavaPairRDD[K, W2], other3: JavaPairRDD[K, W3]) : JavaPairRDD[K, (JIterable[V], JIterable[W1], JIterable[W2], JIterable[W3])] = fromRDD(cogroupResult3ToJava(rdd.cogroup(other1, other2, other3))) /** * For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the * list of values for that key in `this` as well as `other`. */ def cogroup[W](other: JavaPairRDD[K, W], numPartitions: Int) : JavaPairRDD[K, (JIterable[V], JIterable[W])] = fromRDD(cogroupResultToJava(rdd.cogroup(other, numPartitions))) /** * For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a * tuple with the list of values for that key in `this`, `other1` and `other2`. */ def cogroup[W1, W2](other1: JavaPairRDD[K, W1], other2: JavaPairRDD[K, W2], numPartitions: Int) : JavaPairRDD[K, (JIterable[V], JIterable[W1], JIterable[W2])] = fromRDD(cogroupResult2ToJava(rdd.cogroup(other1, other2, numPartitions))) /** * For each key k in `this` or `other1` or `other2` or `other3`, * return a resulting RDD that contains a tuple with the list of values * for that key in `this`, `other1`, `other2` and `other3`. */ def cogroup[W1, W2, W3](other1: JavaPairRDD[K, W1], other2: JavaPairRDD[K, W2], other3: JavaPairRDD[K, W3], numPartitions: Int) : JavaPairRDD[K, (JIterable[V], JIterable[W1], JIterable[W2], JIterable[W3])] = fromRDD(cogroupResult3ToJava(rdd.cogroup(other1, other2, other3, numPartitions))) /** Alias for cogroup. */ def groupWith[W](other: JavaPairRDD[K, W]): JavaPairRDD[K, (JIterable[V], JIterable[W])] = fromRDD(cogroupResultToJava(rdd.groupWith(other))) /** Alias for cogroup. */ def groupWith[W1, W2](other1: JavaPairRDD[K, W1], other2: JavaPairRDD[K, W2]) : JavaPairRDD[K, (JIterable[V], JIterable[W1], JIterable[W2])] = fromRDD(cogroupResult2ToJava(rdd.groupWith(other1, other2))) /** Alias for cogroup. */ def groupWith[W1, W2, W3](other1: JavaPairRDD[K, W1], other2: JavaPairRDD[K, W2], other3: JavaPairRDD[K, W3]) : JavaPairRDD[K, (JIterable[V], JIterable[W1], JIterable[W2], JIterable[W3])] = fromRDD(cogroupResult3ToJava(rdd.groupWith(other1, other2, other3))) /** * Return the list of values in the RDD for key `key`. This operation is done efficiently if the * RDD has a known partitioner by only searching the partition that the key maps to. */ def lookup(key: K): JList[V] = rdd.lookup(key).asJava /** Output the RDD to any Hadoop-supported file system. */ def saveAsHadoopFile[F <: OutputFormat[_, _]]( path: String, keyClass: Class[_], valueClass: Class[_], outputFormatClass: Class[F], conf: JobConf) { rdd.saveAsHadoopFile(path, keyClass, valueClass, outputFormatClass, conf) } /** Output the RDD to any Hadoop-supported file system. */ def saveAsHadoopFile[F <: OutputFormat[_, _]]( path: String, keyClass: Class[_], valueClass: Class[_], outputFormatClass: Class[F]) { rdd.saveAsHadoopFile(path, keyClass, valueClass, outputFormatClass) } /** Output the RDD to any Hadoop-supported file system, compressing with the supplied codec. */ def saveAsHadoopFile[F <: OutputFormat[_, _]]( path: String, keyClass: Class[_], valueClass: Class[_], outputFormatClass: Class[F], codec: Class[_ <: CompressionCodec]) { rdd.saveAsHadoopFile(path, keyClass, valueClass, outputFormatClass, codec) } /** Output the RDD to any Hadoop-supported file system. */ def saveAsNewAPIHadoopFile[F <: NewOutputFormat[_, _]]( path: String, keyClass: Class[_], valueClass: Class[_], outputFormatClass: Class[F], conf: Configuration) { rdd.saveAsNewAPIHadoopFile(path, keyClass, valueClass, outputFormatClass, conf) } /** * Output the RDD to any Hadoop-supported storage system, using * a Configuration object for that storage system. */ def saveAsNewAPIHadoopDataset(conf: Configuration) { rdd.saveAsNewAPIHadoopDataset(conf) } /** Output the RDD to any Hadoop-supported file system. */ def saveAsNewAPIHadoopFile[F <: NewOutputFormat[_, _]]( path: String, keyClass: Class[_], valueClass: Class[_], outputFormatClass: Class[F]) { rdd.saveAsNewAPIHadoopFile(path, keyClass, valueClass, outputFormatClass) } /** * Output the RDD to any Hadoop-supported storage system, using a Hadoop JobConf object for * that storage system. The JobConf should set an OutputFormat and any output paths required * (e.g. a table name to write to) in the same way as it would be configured for a Hadoop * MapReduce job. */ def saveAsHadoopDataset(conf: JobConf) { rdd.saveAsHadoopDataset(conf) } /** * Repartition the RDD according to the given partitioner and, within each resulting partition, * sort records by their keys. * * This is more efficient than calling `repartition` and then sorting within each partition * because it can push the sorting down into the shuffle machinery. */ def repartitionAndSortWithinPartitions(partitioner: Partitioner): JavaPairRDD[K, V] = { val comp = com.google.common.collect.Ordering.natural().asInstanceOf[Comparator[K]] repartitionAndSortWithinPartitions(partitioner, comp) } /** * Repartition the RDD according to the given partitioner and, within each resulting partition, * sort records by their keys. * * This is more efficient than calling `repartition` and then sorting within each partition * because it can push the sorting down into the shuffle machinery. */ def repartitionAndSortWithinPartitions(partitioner: Partitioner, comp: Comparator[K]) : JavaPairRDD[K, V] = { implicit val ordering = comp // Allow implicit conversion of Comparator to Ordering. fromRDD( new OrderedRDDFunctions[K, V, (K, V)](rdd).repartitionAndSortWithinPartitions(partitioner)) } /** * Sort the RDD by key, so that each partition contains a sorted range of the elements in * ascending order. Calling `collect` or `save` on the resulting RDD will return or output an * ordered list of records (in the `save` case, they will be written to multiple `part-X` files * in the filesystem, in order of the keys). */ def sortByKey(): JavaPairRDD[K, V] = sortByKey(true) /** * Sort the RDD by key, so that each partition contains a sorted range of the elements. Calling * `collect` or `save` on the resulting RDD will return or output an ordered list of records * (in the `save` case, they will be written to multiple `part-X` files in the filesystem, in * order of the keys). */ def sortByKey(ascending: Boolean): JavaPairRDD[K, V] = { val comp = com.google.common.collect.Ordering.natural().asInstanceOf[Comparator[K]] sortByKey(comp, ascending) } /** * Sort the RDD by key, so that each partition contains a sorted range of the elements. Calling * `collect` or `save` on the resulting RDD will return or output an ordered list of records * (in the `save` case, they will be written to multiple `part-X` files in the filesystem, in * order of the keys). */ def sortByKey(ascending: Boolean, numPartitions: Int): JavaPairRDD[K, V] = { val comp = com.google.common.collect.Ordering.natural().asInstanceOf[Comparator[K]] sortByKey(comp, ascending, numPartitions) } /** * Sort the RDD by key, so that each partition contains a sorted range of the elements. Calling * `collect` or `save` on the resulting RDD will return or output an ordered list of records * (in the `save` case, they will be written to multiple `part-X` files in the filesystem, in * order of the keys). */ def sortByKey(comp: Comparator[K]): JavaPairRDD[K, V] = sortByKey(comp, true) /** * Sort the RDD by key, so that each partition contains a sorted range of the elements. Calling * `collect` or `save` on the resulting RDD will return or output an ordered list of records * (in the `save` case, they will be written to multiple `part-X` files in the filesystem, in * order of the keys). */ def sortByKey(comp: Comparator[K], ascending: Boolean): JavaPairRDD[K, V] = { implicit val ordering = comp // Allow implicit conversion of Comparator to Ordering. fromRDD(new OrderedRDDFunctions[K, V, (K, V)](rdd).sortByKey(ascending)) } /** * Sort the RDD by key, so that each partition contains a sorted range of the elements. Calling * `collect` or `save` on the resulting RDD will return or output an ordered list of records * (in the `save` case, they will be written to multiple `part-X` files in the filesystem, in * order of the keys). */ def sortByKey(comp: Comparator[K], ascending: Boolean, numPartitions: Int): JavaPairRDD[K, V] = { implicit val ordering = comp // Allow implicit conversion of Comparator to Ordering. fromRDD(new OrderedRDDFunctions[K, V, (K, V)](rdd).sortByKey(ascending, numPartitions)) } /** * Return an RDD with the keys of each tuple. */ def keys(): JavaRDD[K] = JavaRDD.fromRDD[K](rdd.map(_._1)) /** * Return an RDD with the values of each tuple. */ def values(): JavaRDD[V] = JavaRDD.fromRDD[V](rdd.map(_._2)) /** * Return approximate number of distinct values for each key in this RDD. * * The algorithm used is based on streamlib's implementation of "HyperLogLog in Practice: * Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm", available * <a href="http://dx.doi.org/10.1145/2452376.2452456">here</a>. * * @param relativeSD Relative accuracy. Smaller values create counters that require more space. * It must be greater than 0.000017. * @param partitioner partitioner of the resulting RDD. */ def countApproxDistinctByKey(relativeSD: Double, partitioner: Partitioner) : JavaPairRDD[K, jl.Long] = { fromRDD(rdd.countApproxDistinctByKey(relativeSD, partitioner)). asInstanceOf[JavaPairRDD[K, jl.Long]] } /** * Return approximate number of distinct values for each key in this RDD. * * The algorithm used is based on streamlib's implementation of "HyperLogLog in Practice: * Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm", available * <a href="http://dx.doi.org/10.1145/2452376.2452456">here</a>. * * @param relativeSD Relative accuracy. Smaller values create counters that require more space. * It must be greater than 0.000017. * @param numPartitions number of partitions of the resulting RDD. */ def countApproxDistinctByKey(relativeSD: Double, numPartitions: Int): JavaPairRDD[K, jl.Long] = { fromRDD(rdd.countApproxDistinctByKey(relativeSD, numPartitions)). asInstanceOf[JavaPairRDD[K, jl.Long]] } /** * Return approximate number of distinct values for each key in this RDD. * * The algorithm used is based on streamlib's implementation of "HyperLogLog in Practice: * Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm", available * <a href="http://dx.doi.org/10.1145/2452376.2452456">here</a>. * * @param relativeSD Relative accuracy. Smaller values create counters that require more space. * It must be greater than 0.000017. */ def countApproxDistinctByKey(relativeSD: Double): JavaPairRDD[K, jl.Long] = { fromRDD(rdd.countApproxDistinctByKey(relativeSD)).asInstanceOf[JavaPairRDD[K, jl.Long]] } /** Assign a name to this RDD */ def setName(name: String): JavaPairRDD[K, V] = { rdd.setName(name) this } } object JavaPairRDD { private[spark] def groupByResultToJava[K: ClassTag, T](rdd: RDD[(K, Iterable[T])]): RDD[(K, JIterable[T])] = { rddToPairRDDFunctions(rdd).mapValues(_.asJava) } private[spark] def cogroupResultToJava[K: ClassTag, V, W]( rdd: RDD[(K, (Iterable[V], Iterable[W]))]): RDD[(K, (JIterable[V], JIterable[W]))] = { rddToPairRDDFunctions(rdd).mapValues(x => (x._1.asJava, x._2.asJava)) } private[spark] def cogroupResult2ToJava[K: ClassTag, V, W1, W2]( rdd: RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))]) : RDD[(K, (JIterable[V], JIterable[W1], JIterable[W2]))] = { rddToPairRDDFunctions(rdd).mapValues(x => (x._1.asJava, x._2.asJava, x._3.asJava)) } private[spark] def cogroupResult3ToJava[K: ClassTag, V, W1, W2, W3]( rdd: RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2], Iterable[W3]))]) : RDD[(K, (JIterable[V], JIterable[W1], JIterable[W2], JIterable[W3]))] = { rddToPairRDDFunctions(rdd).mapValues(x => (x._1.asJava, x._2.asJava, x._3.asJava, x._4.asJava)) } def fromRDD[K: ClassTag, V: ClassTag](rdd: RDD[(K, V)]): JavaPairRDD[K, V] = { new JavaPairRDD[K, V](rdd) } implicit def toRDD[K, V](rdd: JavaPairRDD[K, V]): RDD[(K, V)] = rdd.rdd private[spark] implicit def toScalaFunction2[T1, T2, R](fun: JFunction2[T1, T2, R]): Function2[T1, T2, R] = { (x: T1, x1: T2) => fun.call(x, x1) } private[spark] implicit def toScalaFunction[T, R](fun: JFunction[T, R]): T => R = x => fun.call(x) private[spark] implicit def pairFunToScalaFun[A, B, C](x: PairFunction[A, B, C]): A => (B, C) = y => x.call(y) /** Convert a JavaRDD of key-value pairs to JavaPairRDD. */ def fromJavaRDD[K, V](rdd: JavaRDD[(K, V)]): JavaPairRDD[K, V] = { implicit val ctagK: ClassTag[K] = fakeClassTag implicit val ctagV: ClassTag[V] = fakeClassTag new JavaPairRDD[K, V](rdd.rdd) } }
ahnqirage/spark
core/src/main/scala/org/apache/spark/api/java/JavaPairRDD.scala
Scala
apache-2.0
46,844
package com.datastax.spark.connector.rdd.partitioner import com.datastax.spark.connector.rdd.partitioner.dht.LongToken /** Fast token range splitter assuming that data are spread out evenly in the whole range. */ private[partitioner] class Murmur3PartitionerTokenRangeSplitter extends TokenRangeSplitter[Long, LongToken] { private type TokenRange = com.datastax.spark.connector.rdd.partitioner.dht.TokenRange[Long, LongToken] override def split(tokenRange: TokenRange, splitSize: Int): Seq[TokenRange] = { val rangeSize = tokenRange.rangeSize val splitPointsCount = if (rangeSize < splitSize) rangeSize.toInt else splitSize val splitPoints = (0 until splitPointsCount).map({ i => new LongToken(tokenRange.start.value + (rangeSize * i / splitPointsCount).toLong) }) :+ tokenRange.end for (Seq(left, right) <- splitPoints.sliding(2).toSeq) yield new TokenRange(left, right, tokenRange.replicas, tokenRange.tokenFactory) } }
ponkin/spark-cassandra-connector
spark-cassandra-connector/src/main/scala/com/datastax/spark/connector/rdd/partitioner/Murmur3PartitionerTokenRangeSplitter.scala
Scala
apache-2.0
967
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package kafka.tools import kafka.consumer._ import joptsimple._ import kafka.api.{OffsetRequest, PartitionOffsetRequestInfo} import kafka.common.TopicAndPartition import kafka.client.ClientUtils import kafka.utils.{CommandLineUtils, Exit, ToolsUtils} object GetOffsetShell { def main(args: Array[String]): Unit = { val parser = new OptionParser(false) val brokerListOpt = parser.accepts("broker-list", "REQUIRED: The list of hostname and port of the server to connect to.") .withRequiredArg .describedAs("hostname:port,...,hostname:port") .ofType(classOf[String]) val topicOpt = parser.accepts("topic", "REQUIRED: The topic to get offset from.") .withRequiredArg .describedAs("topic") .ofType(classOf[String]) val partitionOpt = parser.accepts("partitions", "comma separated list of partition ids. If not specified, it will find offsets for all partitions") .withRequiredArg .describedAs("partition ids") .ofType(classOf[String]) .defaultsTo("") val timeOpt = parser.accepts("time", "timestamp of the offsets before that") .withRequiredArg .describedAs("timestamp/-1(latest)/-2(earliest)") .ofType(classOf[java.lang.Long]) .defaultsTo(-1) val nOffsetsOpt = parser.accepts("offsets", "number of offsets returned") .withRequiredArg .describedAs("count") .ofType(classOf[java.lang.Integer]) .defaultsTo(1) val maxWaitMsOpt = parser.accepts("max-wait-ms", "The max amount of time each fetch request waits.") .withRequiredArg .describedAs("ms") .ofType(classOf[java.lang.Integer]) .defaultsTo(1000) if(args.length == 0) CommandLineUtils.printUsageAndDie(parser, "An interactive shell for getting consumer offsets.") val options = parser.parse(args : _*) CommandLineUtils.checkRequiredArgs(parser, options, brokerListOpt, topicOpt) val clientId = "GetOffsetShell" val brokerList = options.valueOf(brokerListOpt) ToolsUtils.validatePortOrDie(parser, brokerList) val metadataTargetBrokers = ClientUtils.parseBrokerList(brokerList) val topic = options.valueOf(topicOpt) val partitionList = options.valueOf(partitionOpt) val time = options.valueOf(timeOpt).longValue val nOffsets = options.valueOf(nOffsetsOpt).intValue val maxWaitMs = options.valueOf(maxWaitMsOpt).intValue() val topicsMetadata = ClientUtils.fetchTopicMetadata(Set(topic), metadataTargetBrokers, clientId, maxWaitMs).topicsMetadata if(topicsMetadata.size != 1 || !topicsMetadata.head.topic.equals(topic)) { System.err.println(("Error: no valid topic metadata for topic: %s, " + " probably the topic does not exist, run ").format(topic) + "kafka-list-topic.sh to verify") Exit.exit(1) } val partitions = if(partitionList == "") { topicsMetadata.head.partitionsMetadata.map(_.partitionId) } else { partitionList.split(",").map(_.toInt).toSeq } partitions.foreach { partitionId => val partitionMetadataOpt = topicsMetadata.head.partitionsMetadata.find(_.partitionId == partitionId) partitionMetadataOpt match { case Some(metadata) => metadata.leader match { case Some(leader) => val consumer = new SimpleConsumer(leader.host, leader.port, 10000, 100000, clientId) val topicAndPartition = TopicAndPartition(topic, partitionId) val request = OffsetRequest(Map(topicAndPartition -> PartitionOffsetRequestInfo(time, nOffsets))) val offsets = consumer.getOffsetsBefore(request).partitionErrorAndOffsets(topicAndPartition).offsets println("%s:%d:%s".format(topic, partitionId, offsets.mkString(","))) case None => System.err.println("Error: partition %d does not have a leader. Skip getting offsets".format(partitionId)) } case None => System.err.println("Error: partition %d does not exist".format(partitionId)) } } } }
themarkypantz/kafka
core/src/main/scala/kafka/tools/GetOffsetShell.scala
Scala
apache-2.0
5,320
package modules import com.mohiva.play.silhouette.api.util.PasswordInfo import com.mohiva.play.silhouette.impl.daos.DelegableAuthInfoDAO import com.mohiva.play.silhouette.impl.repositories.DelegableAuthInfoRepository import models.daos.passwordinfo.PasswordInfoDao import play.api.libs.concurrent.Execution.Implicits._ /** * Provides a way of saving authorization info about users such as their email and their hashed password * Created by Matthias Braun on 1/3/2016. */ trait AuthInfoServiceModule { def passwordInfoDao: PasswordInfoDao lazy val authInfoRepo = new DelegableAuthInfoRepository(passwordInfoDao) }
mb720/cvs
app/modules/AuthInfoServiceModule.scala
Scala
bsd-2-clause
647
package org.jetbrains.plugins.scala.lang.psi.light import com.intellij.psi._ import com.intellij.psi.util.PsiTreeUtil import org.jetbrains.plugins.scala.lang.psi.ScalaPsiUtil import org.jetbrains.plugins.scala.lang.psi.api.statements.ScAnnotationsHolder import org.jetbrains.plugins.scala.lang.psi.api.toplevel.typedef.{ScMember, ScObject} import org.jetbrains.plugins.scala.lang.psi.api.toplevel.{ScModifierListOwner, ScTypedDefinition} import org.jetbrains.plugins.scala.lang.psi.light.PsiTypedDefinitionWrapper.DefinitionRole import org.jetbrains.plugins.scala.lang.psi.types.ScType import org.jetbrains.plugins.scala.lang.psi.types.api.{AnyRef, Unit} /** * User: Alefas * Date: 18.02.12 */ class PsiTypedDefinitionWrapper(val delegate: ScTypedDefinition, isStatic: Boolean, isInterface: Boolean, role: DefinitionRole.DefinitionRole, cClass: Option[PsiClass] = None) extends { val containingClass: PsiClass = { val result = cClass.getOrElse { delegate.nameContext match { case s: ScMember => val res = Option(s.containingClass).orElse(s.syntheticContainingClass).orNull if (isStatic) { res match { case o: ScObject => o.fakeCompanionClassOrCompanionClass case _ => res } } else res case _ => null } } if (result == null) { val message = "Containing class is null: " + delegate.getContainingFile.getText + "\n" + "typed Definition: " + delegate.getTextRange.getStartOffset throw new RuntimeException(message) } result } val method: PsiMethod = { val methodText = PsiTypedDefinitionWrapper.methodText(delegate, isStatic, isInterface, role) LightUtil.createJavaMethod(methodText, containingClass, delegate.getProject) } } with PsiMethodWrapper(delegate.getManager, method, containingClass) with NavigablePsiElementWrapper[ScTypedDefinition] { override def hasModifierProperty(name: String): Boolean = { name match { case "abstract" if isInterface => true case _ => super.hasModifierProperty(name) } } override def getNameIdentifier: PsiIdentifier = delegate.getNameIdentifier override def isWritable: Boolean = getContainingFile.isWritable override def setName(name: String): PsiElement = { if (role == DefinitionRole.SIMPLE_ROLE) delegate.setName(name) else this } override protected def returnType: ScType = PsiTypedDefinitionWrapper.typeFor(delegate, role) override protected def parameterListText: String = PsiTypedDefinitionWrapper.parameterListText(delegate, role, None) } object PsiTypedDefinitionWrapper { object DefinitionRole extends Enumeration { type DefinitionRole = Value val SIMPLE_ROLE, GETTER, IS_GETTER, SETTER, EQ = Value def isSetter(role: DefinitionRole): Boolean = role == SETTER || role == EQ } import org.jetbrains.plugins.scala.lang.psi.light.PsiTypedDefinitionWrapper.DefinitionRole._ def methodText(b: ScTypedDefinition, isStatic: Boolean, isInterface: Boolean, role: DefinitionRole): String = { val builder = new StringBuilder ScalaPsiUtil.nameContext(b) match { case m: ScModifierListOwner => builder.append(JavaConversionUtil.annotationsAndModifiers(m, isStatic)) case _ => } builder.append("java.lang.Object") builder.append(" ") val name = role match { case SIMPLE_ROLE => b.getName case GETTER => "get" + b.getName.capitalize case IS_GETTER => "is" + b.getName.capitalize case SETTER => "set" + b.getName.capitalize case EQ => b.getName + "_$eq" } builder.append(name) builder.append("()") val holder = PsiTreeUtil.getContextOfType(b, classOf[ScAnnotationsHolder]) if (holder != null) { builder.append(LightUtil.getThrowsSection(holder)) } if (!isInterface) builder.append(" {}") else builder.append(";") builder.toString() } def processWrappersFor(t: ScTypedDefinition, cClass: Option[PsiClass], nodeName: String, isStatic: Boolean, isInterface: Boolean, processMethod: PsiMethod => Unit, processName: String => Unit = _ => ()): Unit = { if (nodeName == t.name) { processMethod(t.getTypedDefinitionWrapper(isStatic, isInterface, role = SIMPLE_ROLE, cClass)) processName(t.name) if (t.isVar) { processMethod(t.getTypedDefinitionWrapper(isStatic, isInterface, role = EQ, cClass)) processName(t.name + "_eq") } } t.nameContext match { case s: ScAnnotationsHolder => val beanProperty = ScalaPsiUtil.isBeanProperty(s) val booleanBeanProperty = ScalaPsiUtil.isBooleanBeanProperty(s) if (beanProperty) { if (nodeName == "get" + t.name.capitalize) { processMethod(t.getTypedDefinitionWrapper(isStatic, isInterface, role = GETTER, cClass)) processName("get" + t.getName.capitalize) } if (t.isVar && nodeName == "set" + t.name.capitalize) { processMethod(t.getTypedDefinitionWrapper(isStatic, isInterface, role = SETTER, cClass)) processName("set" + t.getName.capitalize) } } else if (booleanBeanProperty) { if (nodeName == "is" + t.name.capitalize) { processMethod(t.getTypedDefinitionWrapper(isStatic, isInterface, role = IS_GETTER, cClass)) processName("is" + t.getName.capitalize) } if (t.isVar && nodeName == "set" + t.name.capitalize) { processMethod(t.getTypedDefinitionWrapper(isStatic, isInterface, role = SETTER, cClass)) processName("set" + t.getName.capitalize) } } case _ => } } private[light] def parameterListText(td: ScTypedDefinition, role: DefinitionRole, staticTrait: Option[PsiClassWrapper]): String = { val thisParam = staticTrait.map { trt => val qualName = trt.getQualifiedName qualName.stripSuffix("$class") + " This" } val params = if (!DefinitionRole.isSetter(role)) Nil else { val paramType = typeFor(td, DefinitionRole.SIMPLE_ROLE) val typeText = JavaConversionUtil.typeText(paramType)(td.elementScope) val name = td.getName Seq(s"$typeText $name") } (thisParam ++: params).mkString("(", ", ", ")") } def typeFor(typedDefinition: ScTypedDefinition, role: DefinitionRole): ScType = { import typedDefinition.projectContext if (role == SETTER || role == EQ) Unit else typedDefinition.getType().getOrElse(AnyRef) } }
ilinum/intellij-scala
src/org/jetbrains/plugins/scala/lang/psi/light/PsiTypedDefinitionWrapper.scala
Scala
apache-2.0
6,624
package play.api.cache.redis.impl import scala.concurrent.{ExecutionContext, Future} /** * Invocation policy implements whether to wait for the operation result or not. * This applies only in the limited number of operations. The best examples are `getOrElse` * and `getOrFuture`. First, both methods invoke `get`, then, if missed, compute `orElse` clause. * Finally, there is the invocation of `set`, however, in some scenarios, there is not required to * wait for the result of `set` operation. The value can be returned earlier. This is the difference * between `Eager` (not waiting) and `Lazy` (waiting) invocation policies. */ sealed trait InvocationPolicy { def invoke[T](f: => Future[Any], thenReturn: T)(implicit context: ExecutionContext): Future[T] } object EagerInvocation extends InvocationPolicy { def invoke[T](f: => Future[Any], thenReturn: T)(implicit context: ExecutionContext) = { f; Future successful thenReturn } } object LazyInvocation extends InvocationPolicy { def invoke[T](f: => Future[Any], thenReturn: T)(implicit context: ExecutionContext) = f.map(_ => thenReturn) }
KarelCemus/play-redis
src/main/scala/play/api/cache/redis/impl/InvocationPolicy.scala
Scala
mpl-2.0
1,119
package com.twitter.finagle.util import org.scalatest.FunSuite import com.twitter.finagle.core.util.InetAddressUtil import java.net.InetAddress class InetAddressUtilTest extends FunSuite { test("InetAddressUtil should isPrivateAddress") { import InetAddressUtil.isPrivateAddress assert(!isPrivateAddress(InetAddress.getByName("0.0.0.0"))) assert(!isPrivateAddress(InetAddress.getByName("199.59.148.13"))) assert(isPrivateAddress(InetAddress.getByName("10.0.0.0"))) assert(isPrivateAddress(InetAddress.getByName("10.255.255.255"))) assert(isPrivateAddress(InetAddress.getByName("172.16.0.0"))) assert(isPrivateAddress(InetAddress.getByName("172.31.255.255"))) assert(isPrivateAddress(InetAddress.getByName("192.168.0.0"))) assert(isPrivateAddress(InetAddress.getByName("192.168.255.255"))) } test("InetAddressUtil should getByName") { import InetAddressUtil.getByName assert(getByName("69.55.236.117").getHostAddress == "69.55.236.117") assert(getByName("0.0.0.0").getHostAddress == "0.0.0.0") assert(getByName("255.0.0.0").getHostAddress == "255.0.0.0") assert(getByName("0.255.0.0").getHostAddress == "0.255.0.0") assert(getByName("0.0.255.0").getHostAddress == "0.0.255.0") assert(getByName("0.0.0.255").getHostAddress == "0.0.0.255") assert(getByName("255.255.255.255").getHostAddress == "255.255.255.255") } }
luciferous/finagle
finagle-core/src/test/scala/com/twitter/finagle/util/InetAddressUtilTest.scala
Scala
apache-2.0
1,394
package com.datamountaineer.streamreactor.connect.converters.source import java.util import org.apache.kafka.connect.data.Schema import org.apache.kafka.connect.data.SchemaAndValue import org.apache.kafka.connect.json.JsonConverter /** * A Json converter built with resilience, meaning that malformed Json messages are now ignored */ class JsonResilientConverter extends JsonConverter { override def configure(configs: util.Map[String, _], isKey: Boolean) { super.configure(configs, isKey) } override def fromConnectData(topic: String, schema: Schema, value: Object): Array[Byte] = { try { super.fromConnectData(topic, schema, value) } catch { case t: Throwable => t.printStackTrace() // Ignore exceptions null } } override def toConnectData(topic: String, value: Array[Byte]): SchemaAndValue = { try { super.toConnectData(topic, value) } catch { case t: Throwable => t.printStackTrace() // Ignore exceptions SchemaAndValue.NULL } } }
datamountaineer/kafka-connect-common
src/main/scala/com/datamountaineer/streamreactor/connect/converters/source/JsonResilientConverter.scala
Scala
apache-2.0
1,058
package samples.scalaexchange.step2 import akka.actor.ActorSystem import akka.http.scaladsl.Http import akka.http.scaladsl.server._ import akka.stream.ActorMaterializer import samples.scalaexchange.utils.SampleApp import scala.io.StdIn object HttpServiceApp extends SampleApp with HelloWorldService { val myExceptionHandler = ExceptionHandler { case ex: Exception => complete { <html> <body> {ex.getMessage} </body> </html> } } // our routes: val route: Route = handleExceptions(myExceptionHandler) { helloRoutes } // start the http server: val bindingFuture = Http().bindAndHandle(route, "127.0.0.1", 8080) }
ktoso/akka-scala-exchange
src/main/scala/samples/scalaexchange/step2/HttpServiceApp.scala
Scala
apache-2.0
700
package com.github.jarlakxen.reactive.ftp import scala.concurrent._ import scala.concurrent.duration._ import akka.actor.ActorSystem import akka.stream.ActorMaterializer import akka.stream.scaladsl._ import akka.testkit._ import akka.util.ByteString import org.junit.runner.RunWith import org.specs2.concurrent.ExecutionEnv import org.specs2.mutable.SpecificationLike import org.specs2.runner.JUnitRunner import org.specs2.specification.AfterAll @RunWith(classOf[JUnitRunner]) class FtpSpecs(implicit ee: ExecutionEnv) extends TestKit(ActorSystem("FtpProtocolManagerSpec")) with DockerFTPSpec with ImplicitSender with SpecificationLike with AfterAll { import FtpSpecs._ sequential import system.dispatcher implicit val materializer = ActorMaterializer() override def afterAll(): Unit = { super.afterAll() TestKit.shutdownActorSystem(system) } "Ftp" should { "list files by pattern" in { val files = Ftp().filesFrom("localhost", ftpPort, "test2", "test", "/", "^.*\\\\.txt$".r).runWith(sinkRemoteFileNames) files must be_==(List("file1.txt", "file2.txt")).awaitFor(5 seconds) } "download files by pattern" in { val filesContent = Ftp().filesFrom("localhost", ftpPort, "test2", "test", "/", "^.*\\\\.txt$".r).runWith(sinkRemoteFileContents).flatMap(contents => Future.sequence(contents)) filesContent.map(_.map(_.utf8String)) must be_==(List("", "something")).awaitFor(5 seconds) } } } object FtpSpecs { val sinkRemoteFileNames = Flow[Ftp.RemoteFile] .map(_.name) .toMat(Sink.fold(List.empty[String])(_ :+ _))(Keep.right) def sinkRemoteFileContents(implicit materializer: ActorMaterializer) = Flow[Ftp.RemoteFile] .map(_.stream.runFold(ByteString.empty)(_ ++ _)) .toMat(Sink.fold(List.empty[Future[ByteString]])(_ :+ _))(Keep.right) }
Jarlakxen/reactive-ftp
src/test/scala/com/github/jarlakxen/reactive/ftp/FtpSpecs.scala
Scala
apache-2.0
1,844
/* __ *\\ ** ________ ___ / / ___ __ ____ Scala.js tools ** ** / __/ __// _ | / / / _ | __ / // __/ (c) 2013-2014, LAMP/EPFL ** ** __\\ \\/ /__/ __ |/ /__/ __ |/_// /_\\ \\ http://scala-js.org/ ** ** /____/\\___/_/ |_/____/_/ | |__/ /____/ ** ** |/____/ ** \\* */ package org.scalajs.core.tools.javascript import scala.annotation.tailrec import scala.collection.mutable import java.io._ import java.util.regex.Pattern import java.net.{ URI, URISyntaxException } import org.scalajs.core.ir.Position import org.scalajs.core.tools.io._ /** An abstract builder taking IR or JSTrees */ trait JSTreeBuilder { /** Add a JavaScript tree representing a statement. * The tree must be a valid JavaScript tree (typically obtained by * desugaring a full-fledged IR tree). */ def addJSTree(tree: Trees.Tree): Unit /** Completes the builder. */ def complete(): Unit = () } class JSFileBuilder(val name: String, protected val outputWriter: Writer) extends JSTreeBuilder { def addLine(line: String): Unit = { outputWriter.write(line) outputWriter.write('\\n') } def addLines(lines: Seq[String]): Unit = lines.foreach(addLine) def addFile(file: VirtualJSFile): Unit = addPartsOfFile(file)(!_.startsWith("//# sourceMappingURL=")) def addPartsOfFile(file: VirtualJSFile)(selector: String => Boolean): Unit = { for (line <- file.readLines() if selector(line)) addLine(line) } /** Add a JavaScript tree representing a statement. * The tree must be a valid JavaScript tree (typically obtained by * desugaring a full-fledged IR tree). */ def addJSTree(tree: Trees.Tree): Unit = { val printer = new Printers.JSTreePrinter(outputWriter) printer.printTopLevelTree(tree) // Do not close the printer: we do not have ownership of the writers } /** Closes the underlying writer(s). */ def closeWriters(): Unit = { outputWriter.close() } } class JSFileBuilderWithSourceMapWriter(n: String, ow: Writer, protected val sourceMapWriter: SourceMapWriter) extends JSFileBuilder(n, ow) { override def addLine(line: String): Unit = { super.addLine(line) sourceMapWriter.nextLine() } private final val NotSelected = -1 override def addPartsOfFile(file: VirtualJSFile)( selector: String => Boolean): Unit = { val br = new BufferedReader(file.reader) try { // Select lines, and remember offsets val offsets = new mutable.ArrayBuffer[Int] // (maybe NotSelected) val selectedLineLengths = new mutable.ArrayBuffer[Int] var line: String = br.readLine() var selectedCount = 0 while (line != null) { if (selector(line)) { super.addLine(line) // super call not to advance line in source map offsets += selectedCount selectedLineLengths += line.length selectedCount += 1 } else { offsets += NotSelected } line = br.readLine() } /* We ignore a potential source map. * This happens typically for corejslib.js and other helper files * written directly in JS. * We generate a fake line-by-line source map for these on the fly */ val sourceFile = file.toURI for (lineNumber <- 0 until offsets.size) { val offset = offsets(lineNumber) if (offset != NotSelected) { val originalPos = Position(sourceFile, lineNumber, 0) sourceMapWriter.startNode(0, originalPos, None) sourceMapWriter.endNode(selectedLineLengths(offset)) sourceMapWriter.nextLine() } } } finally { br.close() } } override def addJSTree(tree: Trees.Tree): Unit = { val printer = new Printers.JSTreePrinterWithSourceMap( outputWriter, sourceMapWriter) printer.printTopLevelTree(tree) // Do not close the printer: we do not have ownership of the writers } override def complete(): Unit = { super.complete() sourceMapWriter.complete() } } class JSFileBuilderWithSourceMap(n: String, ow: Writer, sourceMapOutputWriter: Writer, relativizeSourceMapBasePath: Option[URI] = None) extends JSFileBuilderWithSourceMapWriter( n, ow, new SourceMapWriter(sourceMapOutputWriter, n, relativizeSourceMapBasePath)) { override def complete(): Unit = { addLine("//# sourceMappingURL=" + name + ".map") super.complete() } override def closeWriters(): Unit = { super.closeWriters() sourceMapOutputWriter.close() } }
mdedetrich/scala-js
tools/shared/src/main/scala/org/scalajs/core/tools/javascript/JSBuilders.scala
Scala
bsd-3-clause
4,783
package scala.collection.mutable import org.junit.Test import org.junit.runner.RunWith import org.junit.runners.JUnit4 import org.junit.Assert._ import scala.tools.testkit.AssertUtil._ @RunWith(classOf[JUnit4]) class BitSetTest { // Test for scala/bug#8910 @Test def capacityExpansionTest(): Unit = { val bitSet = BitSet.empty val size = bitSet.toBitMask.length bitSet ^= bitSet assert(bitSet.toBitMask.length == size, "Capacity of bitset changed after ^=") bitSet |= bitSet assert(bitSet.toBitMask.length == size, "Capacity of bitset changed after |=") bitSet &= bitSet assert(bitSet.toBitMask.length == size, "Capacity of bitset changed after &=") bitSet &~= bitSet assert(bitSet.toBitMask.length == size, "Capacity of bitset changed after &~=") } @Test def test_SI8917(): Unit = { val bigBitSet = BitSet(1, 100, 10000) val littleBitSet = BitSet(100) bigBitSet &= littleBitSet assert(!(bigBitSet contains 10000), "&= not applied to the full bitset") littleBitSet &= bigBitSet assert(littleBitSet.toBitMask.length < bigBitSet.toBitMask.length, "Needlessly extended the size of bitset on &=") } @Test def test_SI8647(): Unit = { val bs = BitSet() bs.map(_ + 1) // Just needs to compile val xs = bs: SortedSet[Int] xs.map(_ + 1) // Also should compile (did before) } @Test def t10164(): Unit = { val bs = BitSet() val last = (bs ++ (0 to 128)).last // Just needs not to throw assert(last == 128) } @Test def t10399(): Unit = { val bsFromEmptyBitMask = BitSet.fromBitMask(Array.empty[Long]) assert(bsFromEmptyBitMask.add(0)) val bsFromEmptyBitMaskNoCopy = BitSet.fromBitMaskNoCopy(Array.empty[Long]) assert(bsFromEmptyBitMaskNoCopy.add(0)) } @Test def strawman_508: Unit = { val m = BitSet(1) assert(m.map(i => i.toLong).isInstanceOf[TreeSet[Long]]) assert(m.map(i => i + 1).isInstanceOf[BitSet]) val im = collection.immutable.BitSet(1) assert(im.map(i=> i.toLong).isInstanceOf[collection.immutable.TreeSet[Long]]) assert(im.map(i=> i + 1).isInstanceOf[collection.immutable.BitSet]) // SI-10879 assert(m.flatMap(i => Seq(i.toLong)).isInstanceOf[TreeSet[Long]]) assert(m.flatMap(i => Seq(i + 1)).isInstanceOf[BitSet]) assert(im.flatMap(i => Seq(i.toLong)).isInstanceOf[collection.immutable.TreeSet[Long]]) assert(im.flatMap(i => Seq(i + 1)).isInstanceOf[collection.immutable.BitSet]) assert(m.collect { case i => i.toLong }.isInstanceOf[TreeSet[Long]]) assert(m.collect { case i => i + 1 }.isInstanceOf[BitSet]) assert(im.collect { case i => i.toLong }.isInstanceOf[collection.immutable.TreeSet[Long]]) assert(im.collect { case i => i + 1 }.isInstanceOf[collection.immutable.BitSet]) } @Test def strawman_507: Unit = { val m = BitSet(1,2,3) assert(m.collect{case i if i%2 == 1 => i.toLong}.isInstanceOf[TreeSet[Long]]) assert(m.collect{case i if i%2 == 1 => i.toLong} == TreeSet(1L, 3L)) assert(m.collect{case i if i%2 == 1 => i}.isInstanceOf[BitSet]) assert(m.collect{case i if i%2 == 1 => i} == BitSet(1, 3)) val im = collection.immutable.BitSet(1,2,3) assert(im.collect{case i if i%2 == 1 => i.toLong}.isInstanceOf[collection.immutable.TreeSet[Long]]) assert(im.collect{case i if i%2 == 1 => i.toLong} == collection.immutable.TreeSet(1L, 3L)) assert(im.collect{case i if i%2 == 1 => i}.isInstanceOf[collection.immutable.BitSet]) assert(im.collect{case i if i%2 == 1 => i} == collection.immutable.BitSet(1, 3)) } @Test def concat(): Unit = { val a = BitSet(1, 2, 3) val b = BitSet(2, 4, 6) assert(a.concat(b) == BitSet(1, 2, 3, 4, 6)) assert(a.union(b) == BitSet(1, 2, 3, 4, 6)) assert(a.concat(BitSet()) == BitSet(1, 2, 3)) assert(BitSet().concat(a) == BitSet(1, 2, 3)) assert(BitSet().concat(BitSet()) == BitSet()) } @Test def intersect(): Unit = { val a = BitSet(1, 2, 3) val b = BitSet(2, 4, 6) assert(a.intersect(b) == BitSet(2)) assert(a.intersect(BitSet(4, 6)) == BitSet()) assert(a.intersect(BitSet()) == BitSet()) assert(BitSet().intersect(a) == BitSet()) assert(BitSet().intersect(BitSet()) == BitSet()) } @Test def diff(): Unit = { val a = BitSet(1, 2, 3) val b = BitSet(2, 4, 6) assertEquals(BitSet(1, 3), a.diff(b)) assert(b.diff(a) == BitSet(4, 6)) assert(a.diff(BitSet(4, 6)) == BitSet(1, 2, 3)) assert(a.diff(BitSet()) == BitSet(1, 2, 3)) assert(BitSet().diff(a) == BitSet()) assert(BitSet().diff(BitSet()) == BitSet()) } @Test def buildFromRange(): Unit = { import scala.util.chaining._ assert((1 to 1000).to(BitSet) == BitSet().tap(bs => (1 to 1000).foreach(bs.addOne))) } }
martijnhoekstra/scala
test/junit/scala/collection/mutable/BitSetTest.scala
Scala
apache-2.0
4,770
package org.positronicnet.sample.contacts import org.positronicnet.ui._ import org.positronicnet.notifications.Actions._ import org.positronicnet.notifications.Future import org.positronicnet.content.PositronicContentResolver import android.util.Log import android.os.Bundle import android.content.{Context, Intent} import android.view.{View, LayoutInflater} class ViewContactActivity extends AggregatedContactActivity( layoutResourceId = R.layout.view_contact ) { onCreate { findView( TR.edit_button ).onClick { val rawContacts = contactState.rawContacts val intent = new Intent( this, classOf[ EditContactActivity ]) intent.putExtra( "raw_contacts", rawContacts.asInstanceOf[ java.io.Serializable ]) startActivity( intent ) // I *never* want to view again after a save here, so... finish } findView( TR.join_split_button ).onClick { toastLong( "not yet ...") } } def bindContactState = { val contactSlug = getIntent.getSerializableExtra( "contact" ) val contact = contactSlug.asInstanceOf[ Contact ] ContactsActivityUiBinder.show( contact, findView( TR.contact_general ) ) findView( TR.contact_data_items ).bind( contactState.aggregatedData ) } def syncContactState = () // no change... }
rst/positronic_net
sample/contacts_app/src/main/scala/ViewContactActivity.scala
Scala
bsd-3-clause
1,324
import scala.tools.partest.ReplTest object Test extends ReplTest { override def extraSettings = s"-Yrepl-outdir ${testOutput.path}" def code = """ case class Bippy(x: Int) val x = Bippy(1) $intp.reporter.withoutUnwrapping { println($intp.showDirectory) } """ }
lrytz/scala
test/files/run/repl-out-dir.scala
Scala
apache-2.0
272
import javax.servlet.ServletContext import com.example.www.servlet.TestServlet import org.scalatra.LifeCycle class ScalatraBootstrap extends LifeCycle { override def init(context: ServletContext) { context.mount(new TestServlet, "/*") } }
shyknight786/demo-scalatra-angularapp
src/main/scala/ScalatraBootstrap.scala
Scala
apache-2.0
253
/** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package kafka.zk import org.I0Itec.zkclient.ZkClient import kafka.utils.{ZkUtils, CoreUtils} import org.junit.{After, Before} import org.scalatest.junit.JUnitSuite trait ZooKeeperTestHarness extends JUnitSuite { var zkPort: Int = -1 var zookeeper: EmbeddedZookeeper = null var zkClient: ZkClient = null val zkConnectionTimeout = 6000 val zkSessionTimeout = 6000 def zkConnect: String = "127.0.0.1:" + zkPort @Before def setUp() { zookeeper = new EmbeddedZookeeper() zkPort = zookeeper.port zkClient = ZkUtils.createZkClient(zkConnect, zkSessionTimeout, zkConnectionTimeout) } @After def tearDown() { CoreUtils.swallow(zkClient.close()) CoreUtils.swallow(zookeeper.shutdown()) } }
usakey/kafka
core/src/test/scala/unit/kafka/zk/ZooKeeperTestHarness.scala
Scala
apache-2.0
1,534
package io.drakon.icarus import cpw.mods.fml.common.Mod import cpw.mods.fml.common.Mod.EventHandler import cpw.mods.fml.common.event.{FMLPostInitializationEvent, FMLInitializationEvent, FMLPreInitializationEvent} import io.drakon.icarus.jetty.JettyHandler import io.drakon.icarus.lib.Config import io.drakon.icarus.prometheus.PrometheusHandler import org.apache.logging.log4j.LogManager /** * Icarus - Prometheus stat tracker for Minecraft Forge servers. * * @author Arkan <[email protected]> */ @Mod(modid = "icarus", name = "Icarus", version = "@VERSION@", acceptableRemoteVersions = "*", modLanguage = "scala") object Icarus { val log = LogManager.getLogger("Icarus") @EventHandler def preinit(evt:FMLPreInitializationEvent) { log.info("Preinit.") Config.loadConfig(evt.getSuggestedConfigurationFile) PrometheusHandler.init() JettyHandler.init() } @EventHandler def init(evt:FMLInitializationEvent) { log.info("Init.") } @EventHandler def postinit(evt:FMLPostInitializationEvent) { log.info("Postinit.") } }
Emberwalker/Icarus
src/main/scala/io/drakon/icarus/Icarus.scala
Scala
mit
1,064
/* @meta { "processorId": "org.helgoboss.scala_bundle:1.0.0", "projectId": "org.helgoboss:drop-cms-groovy-request-processor:1.0", "dependencies": [ "com.weiglewilczek.scala-lang-osgi:scala-library:2.9.1", "javax.servlet:servlet-api:2.5", "org.helgoboss:drop-cms-request-processor:1.0", "org.helgoboss:drop-cms-meta-snippet-evaluator:1.0", "org.helgoboss:drop-cms-meta-snippet-extractor:1.0", "org.helgoboss:drop-cms-script-context:1.0", "org.helgoboss:storage:1.0-SNAPSHOT", "org.helgoboss:commons-scala-osgi:1.0-SNAPSHOT", "org.codehaus.groovy:groovy:1.7.3" ], "transformers": [ "org.helgoboss.my_oss:1.0.0" ] } */ package org.helgoboss.drop_cms_groovy_request_processor import javax.servlet.http.{ HttpServletRequest, HttpServletResponse } import org.helgoboss.drop_cms_request_processor.{ RequestProcessor, ProcessingContext } import org.helgoboss.commons_scala_osgi.ConvenientBundleActivator import reflect.BeanProperty import groovy.lang.{ Binding, GroovyShell } import org.helgoboss.meta_snippet._ import org.helgoboss.registry._ import org.helgoboss.drop_cms_meta_snippet_evaluator._ import org.helgoboss.drop_cms_script_context._ import org.helgoboss.storage._ import org.helgoboss.drop_cms_meta_snippet_extractor._ class Activator extends ConvenientBundleActivator { whenBundleActive { whenServicesPresent[StorageReader, MetaSnippetExtractor, Registry[MetaSnippetEvaluator]] { new GroovyRequestProcessor(_, _, _).providesService[RequestProcessor, MetaSnippetEvaluator] } } } class GroovyRequestProcessor( storageReader: StorageReader, metaSnippetExtractor: MetaSnippetExtractor, metaSnippetEvaluatorRegistry: Registry[MetaSnippetEvaluator]) extends RequestProcessor with MetaSnippetEvaluator { val id = "groovy" def process(c: ProcessingContext) { // Content type by default text/html c.response.setContentType("text/html") val scriptContext = new SimpleRequestProcessingScriptContext(c, storageReader, metaSnippetExtractor, metaSnippetEvaluatorRegistry) val result = evaluate(scriptContext) c.response.getWriter.write(result) } def evaluate(metaSnippet: MetaSnippet) = { val scriptContext = new SimpleMetaSnippetEvaluatingScriptContext(metaSnippet, storageReader, metaSnippetExtractor, metaSnippetEvaluatorRegistry) evaluate(scriptContext) } private def evaluate(scriptContext: ScriptContext) = { val binding = new Binding binding.setVariable("context", scriptContext) /* Init Groovy */ val groovyShell = new GroovyShell(binding) /* Execute script */ groovyShell.evaluate(scriptContext.metaSnippet.content).toString } }
helgoboss/drop-cms-groovy-request-processor
org.helgoboss.drop-cms-groovy-request-processor.scala
Scala
mit
2,734
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.deploy.history import java.io.File import java.nio.charset.StandardCharsets._ import com.google.common.io.Files import org.apache.spark._ import org.apache.spark.util.Utils class HistoryServerArgumentsSuite extends SparkFunSuite { private val logDir = new File("src/test/resources/spark-events") private val conf = new SparkConf() .set("spark.history.fs.logDirectory", logDir.getAbsolutePath) .set("spark.history.fs.updateInterval", "1") .set("spark.testing", "true") test("No Arguments Parsing") { val argStrings = Array.empty[String] val hsa = new HistoryServerArguments(conf, argStrings) assert(conf.get("spark.history.fs.logDirectory") === logDir.getAbsolutePath) assert(conf.get("spark.history.fs.updateInterval") === "1") assert(conf.get("spark.testing") === "true") } test("Directory Arguments Parsing --dir or -d") { val argStrings = Array("--dir", "src/test/resources/spark-events1") val hsa = new HistoryServerArguments(conf, argStrings) assert(conf.get("spark.history.fs.logDirectory") === "src/test/resources/spark-events1") } test("Directory Param can also be set directly") { val argStrings = Array("src/test/resources/spark-events2") val hsa = new HistoryServerArguments(conf, argStrings) assert(conf.get("spark.history.fs.logDirectory") === "src/test/resources/spark-events2") } test("Properties File Arguments Parsing --properties-file") { val tmpDir = Utils.createTempDir() val outFile = File.createTempFile("test-load-spark-properties", "test", tmpDir) try { Files.write("spark.test.CustomPropertyA blah\\n" + "spark.test.CustomPropertyB notblah\\n", outFile, UTF_8) val argStrings = Array("--properties-file", outFile.getAbsolutePath) val hsa = new HistoryServerArguments(conf, argStrings) assert(conf.get("spark.test.CustomPropertyA") === "blah") assert(conf.get("spark.test.CustomPropertyB") === "notblah") } finally { Utils.deleteRecursively(tmpDir) } } }
bravo-zhang/spark
core/src/test/scala/org/apache/spark/deploy/history/HistoryServerArgumentsSuite.scala
Scala
apache-2.0
2,853
package se.lu.nateko.cp.data.test.formats.delimitedheadercsv import java.io.File import akka.actor.ActorSystem import akka.stream.Materializer import akka.stream.scaladsl.{Sink, StreamConverters} import org.scalatest.BeforeAndAfterAll import org.scalatest.funsuite.AnyFunSuite import se.lu.nateko.cp.data.formats._ import se.lu.nateko.cp.data.formats.bintable.BinTableSink import se.lu.nateko.cp.data.formats.delimitedheadercsv.SitesDelimitedHeaderCsvStreams import scala.concurrent.Await import scala.concurrent.duration.DurationInt class SitesDailyDelimitedHeaderCsvStreamsTests extends AnyFunSuite with BeforeAndAfterAll { private implicit val system: ActorSystem = ActorSystem("sitesdailydelimitedheadercsvstreamstest") import system.dispatcher override def afterAll(): Unit = { Await.ready(system.terminate(), 3.seconds) } private val nRows = 6 private val binTableSink = BinTableSink( new File(getClass.getResource("/").getFile + "/sites_daily_delimiter.cpb"), overwrite = true ) private val formats = ColumnsMetaWithTsCol( new ColumnsMeta(Seq( PlainColumn(Iso8601Date, "TIMESTAMP", isOptional = false), PlainColumn(FloatValue, "SR_IN", isOptional = false), PlainColumn(FloatValue, "PPFD", isOptional = false), PlainColumn(FloatValue, "TA", isOptional = true) )), "TEMP_UTC_TIMESTAMP_FOR_EXTRACTING_DATES" ) private val rowsSource = StreamConverters .fromInputStream(() => getClass.getResourceAsStream("/sites_daily_delimiter.csv")) .via(TimeSeriesStreams.linesFromUtf8Binary) .via(new SitesDelimitedHeaderCsvStreams(formats.colsMeta).standardCsvParser(nRows, formats)) test("Parsing a SITES time series with delimited header example") { val rowsFut = rowsSource.runWith(Sink.seq) val rows = Await.result(rowsFut, 1.second) assert(rows.size === nRows) } test("Timestamp column is injected into the table") { val rowFut = rowsSource .runWith(Sink.head[TableRow]) val row = Await.result(rowFut, 1.second) assert(row.header.columnNames.contains(formats.timeStampColumn)) assert(row.cells.contains("2014-12-31T23:00:00Z")) } test("Parsing a SITES time series with delimited header example and streaming to bintable") { val converter = new TimeSeriesToBinTableConverter(formats.colsMeta) val graph = rowsSource .wireTapMat(Sink.head[TableRow])(_ zip _) .map(converter.parseRow) .toMat(binTableSink)(_ zip _) val ((readResult, firstRow), nRowsWritten) = Await.result(graph.run(), 1.second) assert(readResult.count === 1135) assert(firstRow.header.nRows === nRows) assert(nRowsWritten === nRows) assert(formats.colsMeta.plainCols.keySet.diff(firstRow.header.columnNames.toSet) === Set()) assert(formats.colsMeta.findMissingColumns(firstRow.header.columnNames.toSeq).toSet === Set()) } }
ICOS-Carbon-Portal/data
src/test/scala/se/lu/nateko/cp/data/test/formats/delimitedheadercsv/SitesDailyDelimitedHeaderCsvStreamsTests.scala
Scala
gpl-3.0
2,795
package messages import messages.parser.MessageConstants._ import messages.parser._ import tests.TestWordSpec class MessageParserSpec extends TestWordSpec { val parser = new MessageParser() "Parser" should { "parse simple send with text" in { parser.parse("send to \\"user\\" message \\"sample-text\\"").toOption should equal( Some(Send(Seq(Content(Entity("sample-text"), MessageOperator)), To(Seq(Entity("user")))))) } "fail if message does not contains subject" in { parser.parse("send message \\"sample-text\\"").toOption should equal(None) } "parse send request with multiple users and text" in { parser.parse("send to \\"user-1\\", \\"user-2\\", \\"user-3\\" message \\"sample-text\\"").toOption should equal( Some(Send(Seq(Content(Entity("sample-text"), MessageOperator)), To(Seq(Entity("user-1"), Entity("user-2"), Entity("user-3")))))) } "parse send request with multiple users and content" in { parser .parse( "send to \\"user-1\\", \\"user-2\\", \\"user-3\\" " + "message \\"sample-text-1\\", message \\"sample-text-2\\", " + "attachment \\"../some-path/some-file\\"") .toOption should equal( Some(Send( Seq( Content(Entity("sample-text-1"), MessageOperator), Content(Entity("sample-text-2"), MessageOperator), Content(Entity("../some-path/some-file"), AttachmentOperator) ), To(Seq(Entity("user-1"), Entity("user-2"), Entity("user-3"))) ))) } } }
lymr/fun-chat
fun-chat-server/src/test/scala/messages/MessageParserSpec.scala
Scala
mit
1,569
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.hive import java.io.IOException import java.util.Locale import org.apache.hadoop.fs.{FileSystem, Path} import org.apache.spark.sql._ import org.apache.spark.sql.catalyst.catalog._ import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.catalyst.planning._ import org.apache.spark.sql.catalyst.plans.logical.{InsertIntoDir, InsertIntoTable, LogicalPlan, ScriptTransformation} import org.apache.spark.sql.catalyst.rules.Rule import org.apache.spark.sql.execution._ import org.apache.spark.sql.execution.command.{CreateTableCommand, DDLUtils} import org.apache.spark.sql.execution.datasources.{CreateTable, LogicalRelation} import org.apache.spark.sql.execution.datasources.parquet.{ParquetFileFormat, ParquetOptions} import org.apache.spark.sql.hive.execution._ import org.apache.spark.sql.internal.{HiveSerDe, SQLConf} /** * Determine the database, serde/format and schema of the Hive serde table, according to the storage * properties. */ class ResolveHiveSerdeTable(session: SparkSession) extends Rule[LogicalPlan] { private def determineHiveSerde(table: CatalogTable): CatalogTable = { if (table.storage.serde.nonEmpty) { table } else { if (table.bucketSpec.isDefined) { throw new AnalysisException("Creating bucketed Hive serde table is not supported yet.") } val defaultStorage = HiveSerDe.getDefaultStorage(session.sessionState.conf) val options = new HiveOptions(table.storage.properties) val fileStorage = if (options.fileFormat.isDefined) { HiveSerDe.sourceToSerDe(options.fileFormat.get) match { case Some(s) => CatalogStorageFormat.empty.copy( inputFormat = s.inputFormat, outputFormat = s.outputFormat, serde = s.serde) case None => throw new IllegalArgumentException(s"invalid fileFormat: '${options.fileFormat.get}'") } } else if (options.hasInputOutputFormat) { CatalogStorageFormat.empty.copy( inputFormat = options.inputFormat, outputFormat = options.outputFormat) } else { CatalogStorageFormat.empty } val rowStorage = if (options.serde.isDefined) { CatalogStorageFormat.empty.copy(serde = options.serde) } else { CatalogStorageFormat.empty } val storage = table.storage.copy( inputFormat = fileStorage.inputFormat.orElse(defaultStorage.inputFormat), outputFormat = fileStorage.outputFormat.orElse(defaultStorage.outputFormat), serde = rowStorage.serde.orElse(fileStorage.serde).orElse(defaultStorage.serde), properties = options.serdeProperties) table.copy(storage = storage) } } override def apply(plan: LogicalPlan): LogicalPlan = plan transformUp { case c @ CreateTable(t, _, query) if DDLUtils.isHiveTable(t) => // Finds the database name if the name does not exist. val dbName = t.identifier.database.getOrElse(session.catalog.currentDatabase) val table = t.copy(identifier = t.identifier.copy(database = Some(dbName))) // Determines the serde/format of Hive tables val withStorage = determineHiveSerde(table) // Infers the schema, if empty, because the schema could be determined by Hive // serde. val withSchema = if (query.isEmpty) { val inferred = HiveUtils.inferSchema(withStorage) if (inferred.schema.length <= 0) { throw new AnalysisException("Unable to infer the schema. " + s"The schema specification is required to create the table ${inferred.identifier}.") } inferred } else { withStorage } c.copy(tableDesc = withSchema) } } class DetermineTableStats(session: SparkSession) extends Rule[LogicalPlan] { override def apply(plan: LogicalPlan): LogicalPlan = plan transformUp { case relation: HiveTableRelation if DDLUtils.isHiveTable(relation.tableMeta) && relation.tableMeta.stats.isEmpty => val table = relation.tableMeta val sizeInBytes = if (session.sessionState.conf.fallBackToHdfsForStatsEnabled) { try { val hadoopConf = session.sessionState.newHadoopConf() val tablePath = new Path(table.location) val fs: FileSystem = tablePath.getFileSystem(hadoopConf) fs.getContentSummary(tablePath).getLength } catch { case e: IOException => logWarning("Failed to get table size from hdfs.", e) session.sessionState.conf.defaultSizeInBytes } } else { session.sessionState.conf.defaultSizeInBytes } val withStats = table.copy(stats = Some(CatalogStatistics(sizeInBytes = BigInt(sizeInBytes)))) relation.copy(tableMeta = withStats) } } /** * Replaces generic operations with specific variants that are designed to work with Hive. * * Note that, this rule must be run after `PreprocessTableCreation` and * `PreprocessTableInsertion`. */ object HiveAnalysis extends Rule[LogicalPlan] { override def apply(plan: LogicalPlan): LogicalPlan = plan transformUp { case InsertIntoTable(r: HiveTableRelation, partSpec, query, overwrite, ifPartitionNotExists) if DDLUtils.isHiveTable(r.tableMeta) => InsertIntoHiveTable(r.tableMeta, partSpec, query, overwrite, ifPartitionNotExists, query.output) case CreateTable(tableDesc, mode, None) if DDLUtils.isHiveTable(tableDesc) => DDLUtils.checkDataColNames(tableDesc) CreateTableCommand(tableDesc, ignoreIfExists = mode == SaveMode.Ignore) case CreateTable(tableDesc, mode, Some(query)) if DDLUtils.isHiveTable(tableDesc) => DDLUtils.checkDataColNames(tableDesc) CreateHiveTableAsSelectCommand(tableDesc, query, query.output, mode) case InsertIntoDir(isLocal, storage, provider, child, overwrite) if DDLUtils.isHiveTable(provider) => val outputPath = new Path(storage.locationUri.get) if (overwrite) DDLUtils.verifyNotReadPath(child, outputPath) InsertIntoHiveDirCommand(isLocal, storage, child, overwrite, child.output) } } /** * Relation conversion from metastore relations to data source relations for better performance * * - When writing to non-partitioned Hive-serde Parquet/Orc tables * - When scanning Hive-serde Parquet/ORC tables * * This rule must be run before all other DDL post-hoc resolution rules, i.e. * `PreprocessTableCreation`, `PreprocessTableInsertion`, `DataSourceAnalysis` and `HiveAnalysis`. */ case class RelationConversions( conf: SQLConf, sessionCatalog: HiveSessionCatalog) extends Rule[LogicalPlan] { private def isConvertible(relation: HiveTableRelation): Boolean = { val serde = relation.tableMeta.storage.serde.getOrElse("").toLowerCase(Locale.ROOT) serde.contains("parquet") && conf.getConf(HiveUtils.CONVERT_METASTORE_PARQUET) || serde.contains("orc") && conf.getConf(HiveUtils.CONVERT_METASTORE_ORC) } private def convert(relation: HiveTableRelation): LogicalRelation = { val serde = relation.tableMeta.storage.serde.getOrElse("").toLowerCase(Locale.ROOT) if (serde.contains("parquet")) { val options = relation.tableMeta.storage.properties + (ParquetOptions.MERGE_SCHEMA -> conf.getConf(HiveUtils.CONVERT_METASTORE_PARQUET_WITH_SCHEMA_MERGING).toString) sessionCatalog.metastoreCatalog .convertToLogicalRelation(relation, options, classOf[ParquetFileFormat], "parquet") } else { val options = relation.tableMeta.storage.properties if (conf.getConf(SQLConf.ORC_IMPLEMENTATION) == "native") { sessionCatalog.metastoreCatalog.convertToLogicalRelation( relation, options, classOf[org.apache.spark.sql.execution.datasources.orc.OrcFileFormat], "orc") } else { sessionCatalog.metastoreCatalog.convertToLogicalRelation( relation, options, classOf[org.apache.spark.sql.hive.orc.OrcFileFormat], "orc") } } } override def apply(plan: LogicalPlan): LogicalPlan = { plan transformUp { // Write path case InsertIntoTable(r: HiveTableRelation, partition, query, overwrite, ifPartitionNotExists) // Inserting into partitioned table is not supported in Parquet/Orc data source (yet). if query.resolved && DDLUtils.isHiveTable(r.tableMeta) && !r.isPartitioned && isConvertible(r) => InsertIntoTable(convert(r), partition, query, overwrite, ifPartitionNotExists) // Read path case relation: HiveTableRelation if DDLUtils.isHiveTable(relation.tableMeta) && isConvertible(relation) => convert(relation) } } } private[hive] trait HiveStrategies { // Possibly being too clever with types here... or not clever enough. self: SparkPlanner => val sparkSession: SparkSession object Scripts extends Strategy { def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match { case ScriptTransformation(input, script, output, child, ioschema) => val hiveIoSchema = HiveScriptIOSchema(ioschema) ScriptTransformationExec(input, script, output, planLater(child), hiveIoSchema) :: Nil case _ => Nil } } /** * Retrieves data using a HiveTableScan. Partition pruning predicates are also detected and * applied. */ object HiveTableScans extends Strategy { def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match { case PhysicalOperation(projectList, predicates, relation: HiveTableRelation) => // Filter out all predicates that only deal with partition keys, these are given to the // hive table scan operator to be used for partition pruning. val partitionKeyIds = AttributeSet(relation.partitionCols) val (pruningPredicates, otherPredicates) = predicates.partition { predicate => !predicate.references.isEmpty && predicate.references.subsetOf(partitionKeyIds) } pruneFilterProject( projectList, otherPredicates, identity[Seq[Expression]], HiveTableScanExec(_, relation, pruningPredicates)(sparkSession)) :: Nil case _ => Nil } } }
brad-kaiser/spark
sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala
Scala
apache-2.0
11,059
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.execution import org.apache.spark.rdd.RDD import org.apache.spark.sql.catalyst.InternalRow import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.catalyst.plans.physical.Partitioning import org.apache.spark.sql.catalyst.rules.Rule /** * Converts Java-object-based rows into [[UnsafeRow]]s. */ case class ConvertToUnsafe(child: SparkPlan) extends UnaryNode { require(UnsafeProjection.canSupport(child.schema), s"Cannot convert ${child.schema} to Unsafe") override def output: Seq[Attribute] = child.output override def outputPartitioning: Partitioning = child.outputPartitioning override def outputOrdering: Seq[SortOrder] = child.outputOrdering override def outputsUnsafeRows: Boolean = true override def canProcessUnsafeRows: Boolean = false override def canProcessSafeRows: Boolean = true override protected def doExecute(): RDD[InternalRow] = { child.execute().mapPartitions { iter => val convertToUnsafe = UnsafeProjection.create(child.schema) iter.map(convertToUnsafe) } } } /** * Converts [[UnsafeRow]]s back into Java-object-based rows. */ case class ConvertToSafe(child: SparkPlan) extends UnaryNode { override def output: Seq[Attribute] = child.output override def outputPartitioning: Partitioning = child.outputPartitioning override def outputOrdering: Seq[SortOrder] = child.outputOrdering override def outputsUnsafeRows: Boolean = false override def canProcessUnsafeRows: Boolean = true override def canProcessSafeRows: Boolean = false override protected def doExecute(): RDD[InternalRow] = { child.execute().mapPartitions { iter => val convertToSafe = FromUnsafeProjection(child.output.map(_.dataType)) iter.map(convertToSafe) } } } private[sql] object EnsureRowFormats extends Rule[SparkPlan] { private def onlyHandlesSafeRows(operator: SparkPlan): Boolean = operator.canProcessSafeRows && !operator.canProcessUnsafeRows private def onlyHandlesUnsafeRows(operator: SparkPlan): Boolean = operator.canProcessUnsafeRows && !operator.canProcessSafeRows private def handlesBothSafeAndUnsafeRows(operator: SparkPlan): Boolean = operator.canProcessSafeRows && operator.canProcessUnsafeRows override def apply(operator: SparkPlan): SparkPlan = operator.transformUp { case operator: SparkPlan if onlyHandlesSafeRows(operator) => if (operator.children.exists(_.outputsUnsafeRows)) { operator.withNewChildren { operator.children.map { c => if (c.outputsUnsafeRows) ConvertToSafe(c) else c } } } else { operator } case operator: SparkPlan if onlyHandlesUnsafeRows(operator) => if (operator.children.exists(!_.outputsUnsafeRows)) { operator.withNewChildren { operator.children.map { c => if (!c.outputsUnsafeRows) ConvertToUnsafe(c) else c } } } else { operator } case operator: SparkPlan if handlesBothSafeAndUnsafeRows(operator) => if (operator.children.map(_.outputsUnsafeRows).toSet.size != 1) { // If this operator's children produce both unsafe and safe rows, // convert everything unsafe rows if all the schema of them are support by UnsafeRow if (operator.children.forall(c => UnsafeProjection.canSupport(c.schema))) { operator.withNewChildren { operator.children.map { c => if (!c.outputsUnsafeRows) ConvertToUnsafe(c) else c } } } else { operator.withNewChildren { operator.children.map { c => if (c.outputsUnsafeRows) ConvertToSafe(c) else c } } } } else { operator } } }
pronix/spark
sql/core/src/main/scala/org/apache/spark/sql/execution/rowFormatConverters.scala
Scala
apache-2.0
4,591
/* * Copyright (C) 2015 Stratio (http://stratio.com) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.stratio.sparta.serving.core.models object StreamingContextStatusEnum extends Enumeration { type Status = Value val GettingPolicyFromZookeeper, Initializing, Initialized, Error, ConfigurationError, Stopped, Removed = Value }
danielcsant/sparta
serving-core/src/main/scala/com/stratio/sparta/serving/core/models/StreamingContextStatusEnum.scala
Scala
apache-2.0
861
/* * SVMAdapter.scala is part of grado_informatica_tfg_naturallanguageprocessing (grado_informatica_TFG_NaturalLanguageProcessing). * * grado_informatica_TFG_NaturalLanguageProcessing is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * grado_informatica_TFG_NaturalLanguageProcessing is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with grado_informatica_TFG_NaturalLanguageProcessing. If not, see <http://www.gnu.org/licenses/>. */ package com.elbauldelprogramador.nlp.svm import com.elbauldelprogramador.nlp.svm.SVMTypes.DblArray import libsvm._ import scala.collection.mutable.ArrayBuffer /** * Partially borrowed from https://github.com/prnicolas/ScalaMl/blob/master/src/main/scala/org/scalaml/libraries/libsvm/SVMAdapter.scala * */ object SVMAdapter { type SVMNodes = Array[Array[svm_node]] def createNode(features: Vector[Int]): Array[svm_node] = { // Create a new row for SVM, with the format x -> [ ] -> (2,0.1) (3,0.2) (-1,?) // Where each tuple correspont with the feature number and its value, val newNode = new Array[svm_node](features.size) features.zipWithIndex.foreach { case (f, i) => val node = new svm_node node.index = f node.value = 1.0 newNode(i) = node } newNode } def trainSVM(problem: SVMProblem, param: svm_parameter): svm_model = svm.svm_train(problem.problem, param) def predictSVM(model: svm_model, x: Vector[Int]): Double = svm.svm_predict(model, toNodes(x)) private def toNodes(x: Vector[Int]): Array[svm_node] = x.view.zipWithIndex./:(new ArrayBuffer[svm_node])((xs, f) => { val node = new svm_node node.index = f._1 node.value = 1.0 xs.append(node) xs }).toArray class SVMProblem(numObs: Int, labels: DblArray) { val problem = new svm_problem // Size of the problem (How many rows of data we have problem.l = numObs // Values of each class for the rows of data problem.y = labels // feature fectors, will be in sparse form, size lxNFeatures (But sparse) problem.x = new SVMNodes(numObs) def update(n: Int, node: Array[svm_node]): Unit = { problem.x(n) = node } } }
algui91/NLP_Dependency_Parsing
src/main/scala/com/elbauldelprogramador/nlp/svm/SVMAdapter.scala
Scala
gpl-3.0
2,669
/* sbt -- Simple Build Tool * Copyright 2008, 2009 Mark Harrah */ package xsbt import xsbti.Logger import scala.tools.nsc.{GenericRunnerCommand, Interpreter, InterpreterLoop, ObjectRunner, Settings} import scala.tools.nsc.interpreter.InteractiveReader import scala.tools.nsc.reporters.Reporter import scala.tools.nsc.util.ClassPath class ConsoleInterface { def run(args: Array[String], bootClasspathString: String, classpathString: String, initialCommands: String, cleanupCommands: String, loader: ClassLoader, bindNames: Array[String], bindValues: Array[Any], log: Logger) { val options = args.toList lazy val interpreterSettings = MakeSettings.sync(options, log) val compilerSettings = MakeSettings.sync(options, log) if(!bootClasspathString.isEmpty) compilerSettings.bootclasspath.value = bootClasspathString compilerSettings.classpath.value = classpathString log.info(Message("Starting scala interpreter...")) log.debug(Message(" Boot classpath: " + compilerSettings.bootclasspath.value)) log.debug(Message(" Classpath: " + compilerSettings.classpath.value)) log.info(Message("")) val loop = new InterpreterLoop { override def createInterpreter() = { if(loader ne null) { in = InteractiveReader.createDefault() interpreter = new Interpreter(settings) { override protected def parentClassLoader = if(loader eq null) super.parentClassLoader else loader override protected def newCompiler(settings: Settings, reporter: Reporter) = super.newCompiler(compilerSettings, reporter) } interpreter.setContextClassLoader() } else super.createInterpreter() for( (id, value) <- bindNames zip bindValues) interpreter.beQuietDuring(interpreter.bind(id, value.asInstanceOf[AnyRef].getClass.getName, value)) if(!initialCommands.isEmpty) interpreter.interpret(initialCommands) } override def closeInterpreter() { if(!cleanupCommands.isEmpty) interpreter.interpret(cleanupCommands) super.closeInterpreter() } } loop.main(if(loader eq null) compilerSettings else interpreterSettings) } } object MakeSettings { def apply(args: List[String], log: Logger) = { val command = new GenericRunnerCommand(args, message => log.error(Message(message))) if(command.ok) command.settings else throw new InterfaceCompileFailed(Array(), Array(), command.usageMsg) } def sync(options: List[String], log: Logger) = { val settings = apply(options, log) // -Yrepl-sync is only in 2.9.1+ final class Compat { def Yreplsync = settings.BooleanSetting("-Yrepl-sync", "For compatibility only.") } implicit def compat(s: Settings): Compat = new Compat settings.Yreplsync.value = true settings } }
olove/xsbt
compile/interface/src/main/scala/xsbt/ConsoleInterface.scala
Scala
bsd-3-clause
2,753
package pl.touk.nussknacker.engine.requestresponse import cats.Monad import cats.data.Validated.{Invalid, Valid} import cats.data.{NonEmptyList, Validated, ValidatedNel, WriterT} import cats.implicits.toFunctorOps import io.circe.Json import io.circe.syntax._ import pl.touk.nussknacker.engine.Interpreter.InterpreterShape import pl.touk.nussknacker.engine.ModelData import pl.touk.nussknacker.engine.api._ import pl.touk.nussknacker.engine.api.context.ProcessCompilationError import pl.touk.nussknacker.engine.api.process.ComponentUseCase import pl.touk.nussknacker.engine.api.typed.typing import pl.touk.nussknacker.engine.graph.EspProcess import pl.touk.nussknacker.engine.lite.ScenarioInterpreterFactory.ScenarioInterpreterWithLifecycle import pl.touk.nussknacker.engine.lite.TestRunner.EffectUnwrapper import pl.touk.nussknacker.engine.lite.api.commonTypes.ErrorType import pl.touk.nussknacker.engine.lite.api.customComponentTypes.CapabilityTransformer import pl.touk.nussknacker.engine.lite.api.interpreterTypes.{EndResult, ScenarioInputBatch} import pl.touk.nussknacker.engine.lite.api.runtimecontext.{LiteEngineRuntimeContext, LiteEngineRuntimeContextPreparer} import pl.touk.nussknacker.engine.lite.{InterpreterTestRunner, ScenarioInterpreterFactory, TestRunner} import pl.touk.nussknacker.engine.requestresponse.api.RequestResponseSource import pl.touk.nussknacker.engine.requestresponse.openapi.RequestResponseOpenApiGenerator import pl.touk.nussknacker.engine.requestresponse.openapi.RequestResponseOpenApiGenerator.OutputSchemaProperty import pl.touk.nussknacker.engine.resultcollector.ResultCollector import scala.concurrent.ExecutionContext import scala.language.higherKinds /* This is request-response-specific part of engine: - Future as effects - only one source, simple one input variable - if there is one error we fail whole computation - handling OpenAPI definition */ object RequestResponseInterpreter { type RequestResponseResultType[T] = ValidatedNel[ErrorType, T] def apply[Effect[_]:Monad:InterpreterShape:CapabilityTransformer](process: EspProcess, processVersion: ProcessVersion, context: LiteEngineRuntimeContextPreparer, modelData: ModelData, additionalListeners: List[ProcessListener], resultCollector: ResultCollector, componentUseCase: ComponentUseCase) (implicit ec: ExecutionContext): Validated[NonEmptyList[ProcessCompilationError], RequestResponseScenarioInterpreter[Effect]] = { ScenarioInterpreterFactory.createInterpreter[Effect, Any, AnyRef](process, modelData, additionalListeners, resultCollector, componentUseCase) .map(new RequestResponseScenarioInterpreter(context.prepare(JobData(process.metaData, processVersion)), _)) } // TODO: Some smarter type in Input than Context? class RequestResponseScenarioInterpreter[Effect[_]:Monad](val context: LiteEngineRuntimeContext, statelessScenarioInterpreter: ScenarioInterpreterWithLifecycle[Effect, Any, AnyRef]) (implicit ec: ExecutionContext) extends AutoCloseable { val id: String = context.jobData.metaData.id val sinkTypes: Map[NodeId, typing.TypingResult] = statelessScenarioInterpreter.sinkTypes val (sourceId, source) = statelessScenarioInterpreter.sources.toList match { case Nil => throw new IllegalArgumentException("No source found") case (sourceId, source) :: Nil => (sourceId, source.asInstanceOf[RequestResponseSource[Any]]) case more => throw new IllegalArgumentException(s"More than one source for request-response: ${more.map(_._1)}") } private def invoke(input: Any): Effect[ValidatedNel[ErrorType, List[EndResult[AnyRef]]]] = { val inputBatch = ScenarioInputBatch((sourceId -> input) :: Nil) statelessScenarioInterpreter.invoke(inputBatch).map { case WriterT((errors, results)) => NonEmptyList.fromList(errors).map(Invalid(_)).getOrElse(Valid(results)) } } def invokeToOutput(input: Any): Effect[ValidatedNel[ErrorType, List[Any]]] = { invoke(input).map(_.map(_.map(_.result))) } def open(): Unit = statelessScenarioInterpreter.open(context) def close(): Unit = { statelessScenarioInterpreter.close() context.close() } /* * TODO : move inputSchema and outputSchema to one place * It is better to have both schemas in one place (properties or some new/custom place) * */ def getSchemaOutputProperty: Json = { context.jobData.metaData.additionalFields.flatMap(_.properties.get(OutputSchemaProperty)) match { case None => Map("type" -> "object".asJson, "properties" -> Json.Null).asJson case Some(outputSchemaStr) => CirceUtil.decodeJsonUnsafe[Json](outputSchemaStr, "Provided json is not valid") } } def generateOpenApiDefinition(): Option[Json] = { for { sourceDefinition <- source.openApiDefinition responseDefinition = getSchemaOutputProperty } yield { RequestResponseOpenApiGenerator.generateScenarioDefinition( id, sourceDefinition.definition, responseDefinition, sourceDefinition.description, sourceDefinition.tags ) } } } def testRunner[Effect[_]:InterpreterShape:CapabilityTransformer:EffectUnwrapper]: TestRunner = new InterpreterTestRunner[Effect, Context, AnyRef] }
TouK/nussknacker
engine/lite/request-response/runtime/src/main/scala/pl/touk/nussknacker/engine/requestresponse/RequestResponseInterpreter.scala
Scala
apache-2.0
5,404
package lila.socket import akka.actor.ActorRef import akka.pattern.{ ask, pipe } import play.api.libs.iteratee.{ Iteratee, Enumerator } import play.api.libs.json._ import actorApi._ import lila.common.PimpedJson._ import lila.hub.actorApi.relation.ReloadOnlineFriends import makeTimeout.large object Handler { type Controller = PartialFunction[(String, JsObject), Unit] type Connecter = PartialFunction[Any, (Controller, JsEnumerator, SocketMember)] def apply( hub: lila.hub.Env, socket: ActorRef, uid: String, join: Any, userId: Option[String])(connecter: Connecter): Fu[JsSocketHandler] = { def baseController(member: SocketMember): Controller = { case ("p", _) => socket ! Ping(uid) case ("following_onlines", _) => userId foreach { u => hub.actor.relation ! ReloadOnlineFriends(u) } case ("anaMove", o) => AnaMove parse o foreach { anaMove => anaMove.step match { case scalaz.Success(step) => member push lila.socket.Socket.makeMessage("step", Json.obj( "step" -> step.toJson, "path" -> anaMove.path )) case scalaz.Failure(err) => member push lila.socket.Socket.makeMessage("stepFailure", err.toString) } } case _ => // logwarn("Unhandled msg: " + msg) } def iteratee(controller: Controller, member: SocketMember): JsIteratee = { val control = controller orElse baseController(member) Iteratee.foreach[JsValue](jsv => jsv.asOpt[JsObject] foreach { obj => obj str "t" foreach { t => control.lift(t -> obj) } } ).map(_ => socket ! Quit(uid)) } socket ? join map connecter map { case (controller, enum, member) => iteratee(controller, member) -> enum } } }
danilovsergey/i-bur
modules/socket/src/main/Handler.scala
Scala
mit
1,862
/* * Copyright (c) 2014-2015 Snowplow Analytics Ltd. All rights reserved. * * This program is licensed to you under the Apache License Version 2.0, * and you may not use this file except in compliance with the Apache License Version 2.0. * You may obtain a copy of the Apache License Version 2.0 at http://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, * software distributed under the Apache License Version 2.0 is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the Apache License Version 2.0 for the specific language governing permissions and limitations there under. */ package com.snowplowanalytics package snowplow package enrich package common package adapters package registry // Iglu import iglu.client.{ SchemaKey, Resolver } // Scalaz import scalaz._ import Scalaz._ // Joda-Time import org.joda.time.DateTime // json4s import org.json4s._ import org.json4s.JsonDSL._ import org.json4s.jackson.JsonMethods._ // This project import loaders.{ CollectorPayload, CollectorContext } import utils.ConversionUtils /** * Transforms a Cloudfront access log into raw events */ object CloudfrontAccessLogAdapter { /** * Adapter for Cloudfront web distribution access log files */ object WebDistribution extends Adapter { private val FieldNames = List( "dateTime", "xEdgeLocation", "scBytes", "cIp", "csMethod", "csHost", "csUriStem", "scStatus", "csReferer", "csUserAgent", "csUriQuery", "csCookie", "xEdgeResultType", "xEdgeRequestId", "xHostHeader", "csProtocol", "csBytes", "timeTaken", "xForwardedFor", "sslProtocol", "sslCipher", "xEdgeResponseResultType" ) // Tracker version for Cloudfront access log private val TrackerVersion = "com.amazon.aws.cloudfront/wd_access_log" /** * Converts a CollectorPayload instance into raw events. * Chooses a wd_access_log schema version based on the length of the TSV * Extracts the collector timestamp and IP address from the TSV * * @param payload Generated by the TsvLoader. Its body is the raw TSV. * @param resolver (implicit) The Iglu resolver used for * schema lookup and validation. Not used * @return a validation boxing either a NEL of raw events or a NEL of failure strings */ def toRawEvents(payload: CollectorPayload)(implicit resolver: Resolver): ValidatedRawEvents = payload.body match { case Some(p) => { val fields = p.split("\\t", -1) val schemaVersion = fields.size match { case 12 => "1-0-0".successNel // Before 12 Sep 2012 case 15 => "1-0-1".successNel // 12 Sep 2012 case 18 => "1-0-2".successNel // 21 Oct 2013 case 19 => "1-0-3".successNel // 29 Apr 2014 case 23 => "1-0-4".successNel // 01 Jul 2015 case n => s"Access log TSV line contained $n fields, expected 12, 15, 18, 19, or 23".failNel } schemaVersion.flatMap(v => { // Combine the first two fields into a timestamp val schemaCompatibleFields = "%sT%sZ".format(fields(0), fields(1)) :: fields.toList.tail.tail // Attempt to build the json, accumulating errors from unparseable fields def buildJson(errors: List[String], fields: List[(String, String)], json: JObject): (List[String], JObject) = { fields match { case Nil => (errors, json) case head :: tail => head match { case (name, "") => buildJson(errors, tail, json ~ (name, null)) case ("timeTaken", field) => try { buildJson(errors, tail, json ~ ("timeTaken", field.toDouble)) } catch { case e: NumberFormatException => buildJson("Field [timeTaken]: cannot convert [%s] to Double".format(field) :: errors, tail, json) } case (name, field) if name == "csBytes" || name == "scBytes" => try { buildJson(errors, tail, json ~ (name, field.toInt)) } catch { case e: NumberFormatException => buildJson("Field [%s]: cannot convert [%s] to Int".format(name, field) :: errors, tail, json) } case (name, field) if name == "csReferer" || name == "csUserAgent" => ConversionUtils.doubleDecode(name, field).fold( e => buildJson(e :: errors, tail, json), s => buildJson(errors, tail, json ~ (name, s)) ) case ("csUriQuery", field) => buildJson(errors, tail, json ~ ("csUriQuery", ConversionUtils.singleEncodePcts(field))) case (name, field) => buildJson(errors, tail, json ~ (name, field)) } } } val (errors, ueJson) = buildJson(Nil, FieldNames zip schemaCompatibleFields, JObject()) val failures = errors match { case Nil => None.successNel case h :: t => (NonEmptyList(h) :::> t).fail // list to nonemptylist } val validatedTstamp = toTimestamp(fields(0), fields(1)).map(Some(_)).toValidationNel (validatedTstamp |@| failures) {(tstamp, e) => val ip = schemaCompatibleFields(3) match { case "" => None case nonempty => nonempty.some } val qsParams: Map[String, String] = schemaCompatibleFields(8) match { case "" => Map() case url => Map("url" -> url) } val userAgent = schemaCompatibleFields(9) match { case "" => None case nonempty => ConversionUtils.singleEncodePcts(nonempty).some } val parameters = toUnstructEventParams( TrackerVersion, qsParams, s"iglu:com.amazon.aws.cloudfront/wd_access_log/jsonschema/$v", ueJson, "srv" ) NonEmptyList(RawEvent( api = payload.api, parameters = parameters, contentType = payload.contentType, source = payload.source, context = CollectorContext(tstamp, ip, userAgent, None, Nil, None) )) } }) } case None => "Cloudfront TSV has no body - this should be impossible".failNel } /** * Converts a CloudFront log-format date and * a time to a timestamp. * * @param date The CloudFront log-format date * @param time The CloudFront log-format time * @return the timestamp as a Joda DateTime * or an error String, all wrapped in * a Scalaz Validation */ def toTimestamp(date: String, time: String): Validation[String, DateTime] = try { DateTime.parse("%sT%s+00:00".format(date, time)).success // Construct a UTC ISO date from CloudFront date and time } catch { case e => "Unexpected exception converting Cloudfront web distribution access log date [%s] and time [%s] to timestamp: [%s]".format(date, time, e.getMessage).fail } } }
mdavid/lessig-bigdata
lib/snowplow/3-enrich/scala-common-enrich/src/main/scala/com.snowplowanalytics.snowplow.enrich/common/adapters/registry/CloudfrontAccessLogAdapter.scala
Scala
mit
7,497
package com.plasmaconduit.framework.middleware import com.plasmaconduit.edge.http._ import com.plasmaconduit.framework.mvc.controllers.AdhocController import com.plasmaconduit.framework.mvc.{Controller, Middleware} import com.plasmaconduit.waterhouse.{Hash, HashAlgorithm} import io.netty.buffer.{ByteBuf, Unpooled} final case class EtagCacheMiddleware(algorithm: HashAlgorithm) extends Middleware { def intercept(next: Controller): Controller = AdhocController({ implicit request => next.action(request).flatMap({response => val body = toByteArray(response.body) val hash = Hash.digest(algorithm, body.toArray).toString() val matched = request .headers .get("If-None-Match") .filter(_ == hash) matched match { case Some(x) => response.withStatus(NotModified).withBody("") case None => response.withBody(Unpooled.wrappedBuffer(body)).withHeader(Etag(hash)) } }) }) def toByteArray(buf: ByteBuf): Array[Byte] = { if (buf.hasArray) { buf.array() } else { val bytes = new Array[Byte](buf.readableBytes()) buf.getBytes(buf.readerIndex(), bytes) bytes } } }
plasmaconduit/etag-cache-middleware
src/main/scala/com/plasmaconduit/framework/middleware/EtagCacheMiddleware.scala
Scala
mit
1,189
package com.kostassoid.materialist case class Route(source: Source, target: Target, operationPredicate: StorageOperation ⇒ Boolean)
Kostassoid/materialist
src/main/scala/com/kostassoid/materialist/Route.scala
Scala
apache-2.0
134
/* * Copyright 2001-2013 Artima, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.scalactic import org.scalatest._ import scala.util.Failure import scala.util.Success import scala.util.Try // SKIP-SCALATESTJS,NATIVE-START import SharedHelpers.serializeRoundtrip // SKIP-SCALATESTJS,NATIVE-END class OrSpec extends UnitSpec with Accumulation with TypeCheckedTripleEquals { def isRound(i: Int): Validation[ErrorMessage] = if (i % 10 != 0) Fail(i + " was not a round number") else Pass def isDivBy3(i: Int): Validation[ErrorMessage] = if (i % 3 != 0) Fail(i + " was not divisible by 3") else Pass "An Or" can "be either Good or Bad" in { Good(7).isGood shouldBe true Bad("oops").isBad shouldBe true Good(7) shouldBe an [Or[_, _]] Good(7) shouldBe an [Good[_]] Bad("oops") shouldBe an [Or[_, _]] Bad("oops") shouldBe an [Bad[_]] } it can "have its non-inferred type widened by an apply call with a type param" in { /* scala> Good[Int].orBad("hi") res0: org.scalautils.Bad[Int,String] = Bad(hi) scala> Good(3).orBad[String] res1: org.scalautils.Good[Int,String] = Good(3) scala> Good(3).orBad[ErrorMessage] res2: org.scalautils.Good[Int,org.scalautils.ErrorMessage] = Good(3) scala> Good(3).orBad("oops") <console>:11: error: type mismatch; found : String("oops") required: <:<[Nothing,?] Good(3).orBad("oops") ^ scala> Good[Int].orBad[String] <console>:11: error: missing arguments for method orBad in class GoodieGoodieGumdrop; follow this method with `_' if you want to treat it as a partially applied function Good[Int].orBad[String] ^ */ // If the expected type is known, then you can just say Good or Bad: Good(3) shouldBe Good(3) Bad("oops") shouldBe Bad("oops") // But if the expected type is not known, the inferred type of the other side will be Nothing: // Good(3) will be a Good[Int, Nothing] // Bad("oops") will be a Bad[Nothing, String] // If you want to specify a more specific type than Nothing, you can use this syntax: Good(3).orBad[String] shouldBe Good(3) Good[Int].orBad("oops") shouldBe Bad("oops") // You could also do it this way: Good[Int](3) shouldBe Good(3) Bad[String]("oops") shouldBe Bad("oops") // But that requires that you also give a type that would be inferred from the value. This // would only be necessary if you wanted a more general type than that which // would otherwise be inferred from the given value, such as: Good[AnyVal](3) shouldBe Good(3) Bad[AnyRef]("oops") shouldBe Bad("oops") // In that case, though, I recommend a type ascription, because I think it is easier to read: (Good(3): AnyVal Or String) shouldBe Good(3) (Bad("oops"): Int Or AnyRef) shouldBe Bad("oops") } it can "be used in infix notation" in { def div(a: Int, b: Int): Int Or ArithmeticException = { // Division by zero results in SIGFPE (Floating point exception) // SKIP-SCALATESTNATIVE-START try Good(a / b) catch { case ae: ArithmeticException => Bad(ae) } // SKIP-SCALATESTNATIVE-END if (b == 0) Bad(new ArithmeticException("/ by zero")) else Good(a / b) } div(1, 1) shouldEqual Good(1) div(6, 2) shouldEqual Good(3) div(6, 2) shouldEqual Good(3) div(1, 0).isBad shouldBe true val ae = div(1, 0) match { case Bad(ae) => ae case result => fail("didn't get an Bad" + result) } ae should have message "/ by zero" } it can "be used with map" in { Good(8) map (_ + 1) should equal (Good(9)) Good[Int].orBad("eight") map (_ + 1) should equal (Bad("eight")) } it can "be used with badMap" in { Good(8).orBad[ErrorMessage] badMap (_.toUpperCase) should equal (Good(8)) Good[Int].orBad("eight") badMap (_.toUpperCase) should equal (Bad("EIGHT")) } it can "be used with recover" in { Good(8).orBad[Throwable] recover { case iae: IllegalArgumentException => 9 } should equal (Good(8)) Good[Int].orBad(new IllegalArgumentException) recover { case iae: IllegalArgumentException => 9 } should equal (Good(9)) } it can "be used with recoverWith" in { Good(8).orBad[Throwable] recoverWith { case iae: IllegalArgumentException => Good(9) } should equal (Good(8)) Good[Int].orBad(new IllegalArgumentException) recoverWith { case iae: IllegalArgumentException => Good(9) } should equal (Good(9)) } it can "be used with foreach" in { var vCount = 0 var eCount = 0 Good(8) foreach { vCount += _ } vCount should equal (8) Good[Int].orBad("eight") foreach { eCount += _ } eCount should equal (0) } it can "be used with flatMap" in { Good(8).orBad[String] flatMap ((x: Int) => Good(x + 1)) should equal (Good(9)) Good[Int].orBad("eight") flatMap ((x: Int) => Good(x + 1)) should equal (Bad("eight")) } it can "be used with filter" in { Good(12).filter(isRound) shouldBe Bad("12 was not a round number") Good(10).filter(isRound) shouldBe Good(10) Good[Int].orBad(12).filter(isRound) shouldBe Bad(12) (for (i <- Good(10) if isRound(i)) yield i) shouldBe Good(10) (for (i <- Good(12) if isRound(i)) yield i) shouldBe Bad("12 was not a round number") (for (i <- Good(12) if isRound(i)) yield i) shouldBe Bad("12 was not a round number") (for (i <- Good(30) if isRound(i) && isDivBy3(i)) yield i) shouldBe Good(30) (for (i <- Good(10) if isRound(i) && isDivBy3(i)) yield i) shouldBe Bad("10 was not divisible by 3") (for (i <- Good(3) if isRound(i) && isDivBy3(i)) yield i) shouldBe Bad("3 was not a round number") (for (i <- Good(2) if isRound(i) && isDivBy3(i)) yield i) shouldBe Bad("2 was not a round number") } it can "be used with exists" in { Good(12).exists(_ == 12) shouldBe true Good(12).exists(_ == 13) shouldBe false Good[Int].orBad(12).exists(_ == 12) shouldBe false } it can "be used with forall" in { Good(12).forall(_ > 10) shouldBe true Good(7).forall(_ > 10) shouldBe false Good[Int].orBad(12).forall(_ > 10) shouldBe true Good[Int].orBad(7).forall(_ > 10) shouldBe true } it can "be used with getOrElse, which takes a by-name" in { Good(12).getOrElse(17) shouldBe 12 Good[Int].orBad(12).getOrElse(17) shouldBe 17 var x = 16 // should not increment if Good Good(12) getOrElse { x += 1; x } shouldBe 12 x shouldBe 16 Good[Int].orBad(12) getOrElse { x += 1; x } shouldBe 17 x shouldBe 17 } it can "be used with orElse, which takes a by-name" in { Good(12).orElse(Good(13)) shouldBe Good(12) Bad(12).orElse(Good(13)) shouldBe Good(13) Good(12).orElse(Bad(13)) shouldBe Good(12) Bad(12).orElse(Bad(13)) shouldBe Bad(13) var x = 16 // should not increment if Good Good(12) orElse { x += 1; Good(x) } shouldBe Good(12) x shouldBe 16 Good[Int].orBad(12) orElse { x += 1; Good(x) } shouldBe Good(17) x shouldBe 17 var y = 16 // should not increment if Good Good(12) orElse { y += 1; Bad(y) } shouldBe Good(12) y shouldBe 16 Good[Int].orBad(12) orElse { y += 1; Bad(y) } shouldBe Bad(17) y shouldBe 17 } it can "be used with toOption" in { Good(12).toOption shouldBe Some(12) Good[Int].orBad(12).toOption shouldBe None } it can "be used with toSeq" in { Good(12).toSeq shouldEqual Seq(12) Good[Int].orBad(12).toSeq shouldEqual Seq.empty } // toArray, toBuffer, toIndexedSeq, toIterable, toIterator, toList, // toSeq, toStream, toTraversable, toVector it can "be used with toEither" in { Good(12).toEither shouldBe Right(12) Bad(12).toEither shouldBe Left(12) } it can "be used with accumulating" in { Good(12).orBad[Int].accumulating shouldBe Good(12).orBad[Every[Int]] Good[Int].orBad(12).accumulating shouldBe Good[Int].orBad(One(12)) } it can "be used with toTry, if the error type is a subtype of Throwable" in { Good(12).orBad[Throwable].toTry shouldBe Success(12) Good(12).orBad[RuntimeException].toTry shouldBe Success(12) val ex = new RuntimeException("oops") Good[Int].orBad(ex).toTry shouldBe Failure(ex) Good[Int].orBad(ex).toTry shouldBe Failure(ex) // Does not compile: Good[Int, Int](12).toTry shouldBe Success(12) } it can "be used with transform" in { Good(12).orBad[String].transform((i: Int) => Good(i + 1), (s: String) => Bad(s.toUpperCase)) should === (Good(13)) Good[Int].orBad("hi").transform((i: Int) => Good(i + 1), (s: String) => Bad(s.toUpperCase)) should === (Bad("HI")) Good(12).orBad[String].transform((i: Int) => Bad(i + 1), (s: String) => Good(s.toUpperCase)) should === (Bad(13)) Good[Int].orBad("hi").transform((i: Int) => Bad(i + 1), (s: String) => Good(s.toUpperCase)) should === (Good("HI")) } it can "be used with swap" in { Good(12).orBad[String].swap should === (Good[String].orBad(12)) Good[Int].orBad("hi").swap should === (Good("hi").orBad[Int]) } it can "be used with zip" in { Good(12).orBad[Every[ErrorMessage]] zip Good("hi").orBad[Every[ErrorMessage]] should === (Good((12, "hi")).orBad[Every[ErrorMessage]]) Good[Int].orBad(One("so")) zip Good[String].orBad(One("ho")) should === (Bad(Many("so", "ho"))) (Good(12): Int Or Every[ErrorMessage]) zip Bad[Every[ErrorMessage]](One("ho")) should === (Bad(One("ho"))) Bad[Every[ErrorMessage]](One("so")) zip Good[String]("hi") should === (Bad(One("so"))) Good[Int](12) zip Good[String]("hi") should === (Good[(Int, String)]((12, "hi"))) Bad[One[ErrorMessage]](One("so")) zip Bad[Every[ErrorMessage]](One("ho")) should === (Bad(Many("so", "ho"))) Good[Int](12) zip Bad[Every[ErrorMessage]](One("ho")) should === (Bad(One("ho"))) Bad[One[ErrorMessage]](One("so")) zip Good[String]("hi") should === (Bad(One("so"))) Good[Int](12) zip Good[String]("hi") should === (Good[(Int, String)]((12, "hi"))) Bad[Every[ErrorMessage]](One("so")) zip Bad[One[ErrorMessage]](One("ho")) should === (Bad(Many("so", "ho"))) Good[Int](12) zip Bad[One[ErrorMessage]](One("ho")) should === (Bad(One("ho"))) Bad[Every[ErrorMessage]](One("so")) zip Good[String]("hi") should === (Bad(One("so"))) // Works when right hand side ERR type is a supertype of left hand side ERR type, because that's what Every's ++ does. Good[Int].orBad(One("oops")) zip Good[Int].orBad(One(-1: Any)) shouldBe Bad(Many("oops", -1)) Good[Int].orBad(One("oops": Any)) zip Good[Int].orBad(One(-1)) shouldBe Bad(Many("oops", -1)) Good[Int].orBad(One("oops")) zip Good[Int].orBad(One(-1)) shouldBe Bad(Many("oops", -1)) Good[Int].orBad(One(-1)) zip Good[Int].orBad(One("oops": Any)) shouldBe Bad(Many(-1, "oops")) } it can "be used with when" in { Good[Int](12).when( (i: Int) => if (i > 0) Pass else Fail(i + " was not greater than 0"), (i: Int) => if (i < 100) Pass else Fail(i + " was not less than 100"), (i: Int) => if (i % 2 == 0) Pass else Fail(i + " was not even") ) shouldBe Good(12) Good[Int](12).when( (i: Int) => if (i > 0) Pass else Fail(i + " was not greater than 0"), (i: Int) => if (i < 3) Pass else Fail(i + " was not less than 3"), (i: Int) => if (i % 2 == 0) Pass else Fail(i + " was not even") ) shouldBe Bad(One("12 was not less than 3")) Good[Int](12).when( (i: Int) => if (i > 0) Pass else Fail(i + " was not greater than 0"), (i: Int) => if (i < 3) Pass else Fail(i + " was not less than 3"), (i: Int) => if (i % 2 == 1) Pass else Fail(i + " was not odd") ) shouldBe Bad(Many("12 was not less than 3", "12 was not odd")) Good[Int](12).when( (i: Int) => if (i > 99) Pass else Fail(i + " was not greater than 99"), (i: Int) => if (i < 3) Pass else Fail(i + " was not less than 3"), (i: Int) => if (i % 2 == 1) Pass else Fail(i + " was not odd") ) shouldBe Bad(Many("12 was not greater than 99", "12 was not less than 3", "12 was not odd")) Good[Int].orBad[Every[ErrorMessage]](One("original error")).when( (i: Int) => if (i > 0) Pass else Fail(i + " was not greater than 0"), (i: Int) => if (i < 3) Pass else Fail(i + " was not less than 3"), (i: Int) => if (i % 2 == 0) Pass else Fail(i + " was not even") ) shouldBe Bad(One("original error")) Good[Int].orBad[Every[ErrorMessage]](Many("original error 1", "original error 2")).when( (i: Int) => if (i > 0) Pass else Fail(i + " was not greater than 0"), (i: Int) => if (i < 3) Pass else Fail(i + " was not less than 3"), (i: Int) => if (i % 2 == 0) Pass else Fail(i + " was not even") ) shouldBe Bad(Many("original error 1", "original error 2")) Good("hi").orBad[Every[Int]].when((i: String) => Fail(2.0)) shouldBe Bad(One(2.0)) (for (i <- Good(10) when isRound) yield i) shouldBe Good(10) (for (i <- Good(12) when isRound) yield i) shouldBe Bad(One("12 was not a round number")) (for (i <- Good(12) when isRound) yield i) shouldBe Bad(One("12 was not a round number")) (for (i <- Good(30) when (isRound, isDivBy3)) yield i) shouldBe Good(30) (for (i <- Good(10) when (isRound, isDivBy3)) yield i) shouldBe Bad(One("10 was not divisible by 3")) (for (i <- Good(3) when (isRound, isDivBy3)) yield i) shouldBe Bad(One("3 was not a round number")) (for (i <- Good(2) when (isRound, isDivBy3)) yield i) shouldBe Bad(Many("2 was not a round number", "2 was not divisible by 3")) } it can "be created with the attempt helper method" in { attempt { 2 / 1 } should === (Good(2)) val divByZero = attempt { throw new ArithmeticException("/ by zero") } divByZero.isBad shouldBe true divByZero match { case Bad(ex) => ex shouldBe an [ArithmeticException] ex.getMessage shouldBe "/ by zero" case _ => fail() } divByZero.isBad shouldBe true intercept[VirtualMachineError] { attempt { throw new VirtualMachineError {} } } } it can "be created from a Try via the from(Try) factory method" in { Or.from(Success(12)) shouldBe Good(12) Or.from(Success(12): Try[Int]) shouldBe Good(12) val ex = new Exception("oops") Or.from(Failure(ex)) shouldBe Bad(ex) Or.from(Failure(ex): Try[Int]) shouldBe Bad(ex) } it can "be created with the from(Either) factory method" in { Or.from(Right(12)) shouldBe Good(12) Or.from(Right(12): Either[String, Int]) shouldBe Good(12) val ex = new Exception("oops") Or.from(Left(ex)) shouldBe Bad(ex) Or.from(Left("oops")) shouldBe Bad("oops") Or.from(Left("oops"): Either[String, String]) shouldBe Bad("oops") } it can "be created with the from(Option, BadIfNone) factory method" in { Or.from(Some(12), "won't be used") shouldBe Good(12) Or.from(Some(12): Option[Int], "won't be used") shouldBe Good(12) val ex = new Exception("oops") Or.from(None, ex) shouldBe Bad(ex) Or.from(None, "oops") shouldBe Bad("oops") Or.from(None: Option[String], "oops") shouldBe Bad("oops") } it can "be validated with collection.validatedBy" in { def isOdd(i: Int): Int Or One[ErrorMessage] = if (i % 2 == 1) Good(i) else Bad(One(s"$i was not odd")) // List List.empty[Int].validatedBy(isOdd) shouldBe Good(List.empty[Int]) List(3).validatedBy(isOdd) shouldBe Good(List(3)) List(4).validatedBy(isOdd) shouldBe Bad(One("4 was not odd")) List(3, 5).validatedBy(isOdd) shouldBe Good(List(3, 5)) List(4, 6).validatedBy(isOdd) shouldBe Bad(Every("4 was not odd", "6 was not odd")) List(3, 4).validatedBy(isOdd) shouldBe Bad(One("4 was not odd")) List(4, 3).validatedBy(isOdd) shouldBe Bad(One("4 was not odd")) List(3, 5, 7).validatedBy(isOdd) shouldBe Good(List(3, 5, 7)) // Vector Vector.empty[Int].validatedBy(isOdd) shouldBe Good(Vector.empty[Int]) Vector(3).validatedBy(isOdd) shouldBe Good(Vector(3)) Vector(4).validatedBy(isOdd) shouldBe Bad(One("4 was not odd")) Vector(3, 5).validatedBy(isOdd) shouldBe Good(Vector(3, 5)) Vector(4, 6).validatedBy(isOdd) shouldBe Bad(Every("4 was not odd", "6 was not odd")) Vector(3, 4).validatedBy(isOdd) shouldBe Bad(One("4 was not odd")) Vector(4, 3).validatedBy(isOdd) shouldBe Bad(One("4 was not odd")) Vector(3, 5, 7).validatedBy(isOdd) shouldBe Good(Vector(3, 5, 7)) // Iterator List.empty[Int].iterator.validatedBy(isOdd).map(_.toStream) shouldBe Good(List.empty[Int].iterator).map(_.toStream) List(3).iterator.validatedBy(isOdd).map(_.toStream) shouldBe Good(List(3).iterator).map(_.toStream) List(4).iterator.validatedBy(isOdd) shouldBe Bad(One("4 was not odd")) List(3, 5).iterator.validatedBy(isOdd).map(_.toStream) shouldBe Good(List(3, 5).iterator).map(_.toStream) List(4, 6).iterator.validatedBy(isOdd) shouldBe Bad(Every("4 was not odd", "6 was not odd")) List(3, 4).iterator.validatedBy(isOdd) shouldBe Bad(One("4 was not odd")) List(4, 3).iterator.validatedBy(isOdd) shouldBe Bad(One("4 was not odd")) List(3, 5, 7).iterator.validatedBy(isOdd).map(_.toStream) shouldBe Good(List(3, 5, 7).iterator).map(_.toStream) // Set Set.empty[Int].validatedBy(isOdd) shouldBe Good(Set.empty[Int]) Set(3).validatedBy(isOdd) shouldBe Good(Set(3)) Set(4).validatedBy(isOdd) shouldBe Bad(One("4 was not odd")) Set(3, 5).validatedBy(isOdd) shouldBe Good(Set(3, 5)) Set(4, 6).validatedBy(isOdd) shouldBe Bad(Every("4 was not odd", "6 was not odd")) Set(3, 4).validatedBy(isOdd) shouldBe Bad(One("4 was not odd")) Set(4, 3).validatedBy(isOdd) shouldBe Bad(One("4 was not odd")) Set(3, 5, 7).validatedBy(isOdd) shouldBe Good(Set(3, 5, 7)) Set.empty[Int].validatedBy(isOdd) shouldBe Good(Set.empty[Int]) // Every One(3).validatedBy(isOdd) shouldBe Good(One(3)) Every(3).validatedBy(isOdd) shouldBe Good(One(3)) One(4).validatedBy(isOdd) shouldBe Bad(One("4 was not odd")) Every(4).validatedBy(isOdd) shouldBe Bad(One("4 was not odd")) Many(3, 5).validatedBy(isOdd) shouldBe Good(Many(3, 5)) Every(3, 5).validatedBy(isOdd) shouldBe Good(Many(3, 5)) Many(4, 6).validatedBy(isOdd) shouldBe Bad(Every("4 was not odd", "6 was not odd")) Every(4, 6).validatedBy(isOdd) shouldBe Bad(Every("4 was not odd", "6 was not odd")) Many(3, 4).validatedBy(isOdd) shouldBe Bad(One("4 was not odd")) Every(3, 4).validatedBy(isOdd) shouldBe Bad(One("4 was not odd")) Many(4, 3).validatedBy(isOdd) shouldBe Bad(One("4 was not odd")) Every(4, 3).validatedBy(isOdd) shouldBe Bad(One("4 was not odd")) Many(3, 5, 7).validatedBy(isOdd) shouldBe Good(Every(3, 5, 7)) Every(3, 5, 7).validatedBy(isOdd) shouldBe Good(Many(3, 5, 7)) // Option Some(3).validatedBy(isOdd) shouldBe Good(Some(3)) (None: Option[Int]).validatedBy(isOdd) shouldBe Good(None) Some(4).validatedBy(isOdd) shouldBe Bad(One("4 was not odd")) } it can "be validated with collection.validatedBy when the map goes to a different type" in { def parseAge(input: String): Int Or One[ErrorMessage] = { try { val age = input.trim.toInt if (age >= 0) Good(age) else Bad(One(s""""${age}" is not a valid age""")) } catch { case _: NumberFormatException => Bad(One(s""""${input}" is not a valid integer""")) } } Some("29").validatedBy(parseAge) shouldBe Good(Some(29)) Some("-30").validatedBy(parseAge) shouldBe Bad(One("\\"-30\\" is not a valid age")) Every("29", "30", "31").validatedBy(parseAge) shouldBe Good(Many(29, 30, 31)) Every("29", "-30", "31").validatedBy(parseAge) shouldBe Bad(One("\\"-30\\" is not a valid age")) Every("29", "-30", "-31").validatedBy(parseAge) shouldBe Bad(Many("\\"-30\\" is not a valid age", "\\"-31\\" is not a valid age")) List("29", "30", "31").validatedBy(parseAge) shouldBe Good(List(29, 30, 31)) List("29", "-30", "31").validatedBy(parseAge) shouldBe Bad(One("\\"-30\\" is not a valid age")) List("29", "-30", "-31").validatedBy(parseAge) shouldBe Bad(Many("\\"-30\\" is not a valid age", "\\"-31\\" is not a valid age")) } it can "be combined with collection.combined" in { // List // Is this the right answer? Has to be, because couldn't come up with an error anyway. List.empty[Int Or Every[String]].combined shouldBe Good(List.empty[Int]) // def combine[G, ELE, EVERY[b] <: Every[b], SEQ[s]](xs: SEQ[G Or EVERY[ELE]])(implicit seq: Sequenceable[SEQ]): SEQ[G] Or Every[ELE] = // G = Int, ELE = Nothing, SEQ = List List(Good(3)).combined shouldBe Good(List(3)) List(Bad(One("oops"))).combined shouldBe Bad(One("oops")) List(Good(3), Good(4)).combined shouldBe Good(List(3, 4)) List(Bad(One("darn")), Bad(One("oops"))).combined shouldBe Bad(Every("darn", "oops")) List(Good(3), Bad(One("oops"))).combined shouldBe Bad(One("oops")) List(Bad(One("oops")), Good(3)).combined shouldBe Bad(One("oops")) List(Good(3), Good(4), Good(5)).combined shouldBe Good(List(3, 4, 5)) // Vector Vector.empty[Int Or Every[String]].combined shouldBe Good(Vector.empty[Int]) Vector(Good(3)).combined shouldBe Good(Vector(3)) Vector(Bad(One("oops"))).combined shouldBe Bad(One("oops")) Vector(Good(3), Good(4)).combined shouldBe Good(Vector(3, 4)) Vector(Bad(One("darn")), Bad(One("oops"))).combined shouldBe Bad(Every("darn", "oops")) Vector(Good(3), Bad(One("oops"))).combined shouldBe Bad(One("oops")) Vector(Bad(One("oops")), Good(3)).combined shouldBe Bad(One("oops")) Vector(Good(3), Good(4), Good(5)).combined shouldBe Good(Vector(3, 4, 5)) // Do the same thing with Iterator (List.empty[Int Or Every[String]].iterator).combined.map(_.toStream) shouldEqual (Good(List.empty[Int].iterator).map(_.toStream)) List(Good(3)).iterator.combined.map(_.toStream) shouldEqual (Good(List(3).iterator).map(_.toStream)) List(Bad(One("oops"))).iterator.combined shouldEqual (Bad(One("oops"))) List(Good(3), Good(4)).iterator.combined.map(_.toStream) shouldEqual (Good(List(3, 4).iterator).map(_.toStream)) List(Bad(One("darn")), Bad(One("oops"))).iterator.combined shouldEqual (Bad(Every("darn", "oops"))) List(Good(3), Bad(One("oops"))).iterator.combined shouldEqual (Bad(One("oops"))) List(Bad(One("oops")), Good(3)).iterator.combined shouldEqual (Bad(One("oops"))) List(Good(3), Good(4), Good(5)).iterator.combined.map(_.toStream) shouldEqual (Good(List(3, 4, 5).iterator).map(_.toStream)) // Set Set.empty[Int Or Every[String]].combined shouldBe Good(Set.empty[Int]) Set(Good[Int](3), Bad[Every[String]](Every("oops"))).asInstanceOf[Set[Int Or Every[String]]].combined shouldBe Bad(One("oops")) Set(Good[Int](3), Bad[Every[String]](Every("oops"))).combined shouldBe Bad(One("oops")) Set(Good(3)).combined shouldBe Good(Set(3)) convertGenSetOnceToCombinable3(Set(Bad(One("oops")))).combined shouldBe Bad(One("oops")) Set(Good(3), Good(4)).combined shouldBe Good(Set(3, 4)) Set(Bad(One("darn")), Bad(One("oops"))).combined shouldBe Bad(Every("darn", "oops")) Set(Good(3), Bad(One("oops"))).combined shouldBe Bad(One("oops")) Set(Bad(One("oops")), Good(3)).combined shouldBe Bad(One("oops")) Set(Good(3), Good(4), Good(5)).combined shouldBe Good(Set(3, 4, 5)) // Every Every(Good(3).orBad[Every[String]], Good[Int].orBad(Every("oops"))).combined shouldBe Bad(One("oops")) Every(Good(3)).combined shouldBe Good(Every(3)) One(Good(3)).combined shouldBe Good(Every(3)) Every(Bad(One("oops"))).combined shouldBe Bad(One("oops")) One(Bad(One("oops"))).combined shouldBe Bad(One("oops")) Every(Good(3), Good(4)).combined shouldBe Good(Every(3, 4)) Many(Good(3), Good(4)).combined shouldBe Good(Every(3, 4)) Every(Bad(One("darn")), Bad(One("oops"))).combined shouldBe Bad(Every("darn", "oops")) Many(Bad(One("darn")), Bad(One("oops"))).combined shouldBe Bad(Every("darn", "oops")) Every(Good(3), Bad(One("oops"))).combined shouldBe Bad(One("oops")) Every(Bad(One("oops")), Good(3)).combined shouldBe Bad(One("oops")) Every(Good(3), Good(4), Good(5)).combined shouldBe Good(Every(3, 4, 5)) // Option Some(Good(3)).combined shouldBe Good(Some(3)) (None: Option[Int Or Every[ErrorMessage]]).combined shouldBe Good(None) Some(Bad(One("oops"))).combined shouldBe Bad(One("oops")) Some(Bad(Many("oops", "idoops"))).combined shouldBe Bad(Many("oops", "idoops")) } it can "be folded with fold" in { Good(3).orBad[String].fold(_ + 1, _.length) shouldBe 4 Good[Int].orBad("howdy").fold(_ + 1, _.length) shouldBe 5 } // SKIP-SCALATESTJS,NATIVE-START it can "be serialized correctly" in { serializeRoundtrip(Or.from(Success(12)) shouldBe Good(12)) val ex = new Exception("oops") serializeRoundtrip(Or.from(Failure(ex)) shouldBe Bad(ex)) } // SKIP-SCALATESTJS,NATIVE-END "A Good" can "be widened to an Or type via .asOr" in { Good(1).asOr shouldBe Good(1) /* scala> xs.foldLeft(Good(6).orBad[ErrorMessage]) { (acc, x) => acc orElse (if (x % 2 == 0) Good(x) else acc) } <console>:12: error: type mismatch; found : org.scalautils.Or[Int,org.scalautils.ErrorMessage] required: org.scalautils.Good[Int,org.scalautils.ErrorMessage] xs.foldLeft(Good(6).orBad[ErrorMessage]) { (acc, x) => acc orElse (if (x % 2 == 0) Good(x) else acc) } ^ scala> xs.foldLeft(Good(6).orBad[ErrorMessage].asOr) { (acc, x) => acc orElse (if (x % 2 == 0) Good(x) else acc) } res2: org.scalautils.Or[Int,org.scalautils.ErrorMessage] = Good(6) */ val xs = List(1, 2, 3) xs.foldLeft(Good(6).orBad[ErrorMessage].asOr) { (acc, x) => acc orElse (if (x % 2 == 0) Good(x) else acc) } shouldBe Good(6) } // SKIP-SCALATESTJS,NATIVE-START it can "be serialized correctly" in { serializeRoundtrip(Good(1)) shouldBe Good(1) } // SKIP-SCALATESTJS,NATIVE-END "A Bad" can "be widened to an Or type via .asOr" in { Bad("oops").asOr shouldBe Bad("oops") /* scala> xs.foldLeft(Good[Int].orBad("no evens")) { (acc, x) => acc orElse (if (x % 2 == 0) Good(x) else acc) } <console>:12: error: type mismatch; found : org.scalautils.Or[Int,String] required: org.scalautils.Bad[Int,String] xs.foldLeft(Good[Int].orBad("no evens")) { (acc, x) => acc orElse (if (x % 2 == 0) Good(x) else acc) } ^ scala> xs.foldLeft(Good[Int].orBad("no evens").asOr) { (acc, x) => acc orElse (if (x % 2 == 0) Good(x) else acc) } res7: org.scalautils.Or[Int,String] = Good(2) */ val xs = List(1, 2, 3) xs.foldLeft(Good[Int].orBad("no evens").asOr) { (acc, x) => acc orElse (if (x % 2 == 0) Good(x) else acc) } shouldBe Good(2) val ys = List(1, 3, 5) ys.foldLeft(Good[Int].orBad("no evens").asOr) { (acc, x) => acc orElse (if (x % 2 == 0) Good(x) else acc) } shouldBe Bad("no evens") } // SKIP-SCALATESTJS,NATIVE-START it can "be serialized correctly" in { serializeRoundtrip(Bad("oops")) shouldBe Bad("oops") } // SKIP-SCALATESTJS,NATIVE-END "The Or companion" should "offer a concise type lambda syntax" in { // One way: """ trait Functor[Context[_]] { def map[A, B](ca: Context[A])(f: A => B): Context[B] } class OrFunctor[BAD] extends Functor[Or.B[BAD]#G] { override def map[G, H](ca: G Or BAD)(f: G => H): H Or BAD = ca.map(f) } class BadOrFunctor[GOOD] extends Functor[Or.G[GOOD]#B] { override def map[B, C](ca: GOOD Or B)(f: B => C): GOOD Or C = ca.badMap(f) } """ should compile /* // Other way: class OrFunctor[B] extends Functor[Or.BAD[B]#GOOD] { override def map[G, H](ca: G Or B)(f: G => H): H Or B = ca.map(f) } class BadOrFunctor[G] extends Functor[Or.GOOD[G]#BAD] { override def map[B, C](ca: G Or B)(f: B => C): G Or C = ca.badMap(f) } */ } }
scalatest/scalatest
jvm/scalactic-test/src/test/scala/org/scalactic/OrSpec.scala
Scala
apache-2.0
28,773
package com.arcusys.learn.web import com.arcusys.learn.controllers.api.BaseApiController import com.arcusys.valamis.file.service.FileService import com.arcusys.valamis.util.FileSystemUtil import com.escalatesoft.subcut.inject.BindingModule import com.arcusys.learn.ioc.Configuration import org.scalatra.servlet.FileUploadSupport import org.scalatra.SinatraRouteMatcher class FileStorageFilter(configuration: BindingModule) extends BaseApiController(configuration) with ServletBase with FileUploadSupport { def this() = this(Configuration) //next line fixes 404 implicit override def string2RouteMatcher(path: String) = new SinatraRouteMatcher(path) private val fileService = inject[FileService] get("/*.*") { val filename = multiParams("splat").mkString(".") val extension = multiParams("splat").last.split('.').last contentType = extension match { case "css" => "text/css" case "htm" => "text/html" case "html" => "text/html" case "js" => "application/javascript" case "png" => "image/png" case "jpg" => "image/jpeg" case "jpeg" => "image/jpeg" case "gif" => "image/gif" case "swf" => "application/x-shockwave-flash" case _ => FileSystemUtil.getMimeType(filename) } val fileContentOption = fileService.getFileContentOption(filename) if (fileContentOption.isDefined) { response.getOutputStream.write(fileContentOption.getOrElse(halt(405))) } else halt(404) } }
ViLPy/Valamis
learn-portlet/src/main/scala/com/arcusys/learn/web/FileStorageFilter.scala
Scala
lgpl-3.0
1,522
//:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** @author John Miller * @version 1.3 * @date Wed May 28 16:06:12 EDT 2014 * @see LICENSE (MIT style license file). * * @see www.math.pitt.edu/~sussmanm//2071Spring08/lab09/index.html * @see www.netlib.org/lapack/lawnspdf/lawn03.pdf * @see www.netlib.org/lapack/lawns/lawn11.ps * @see fortranwiki.org/fortran/show/svd * * Code translated from LAPACK Fortran code */ // U N D E R D E V E L O P M E N T // FIX Q and P incorrected permuted package scalation.linalgebra import scala.math.{abs, max, min, sqrt} import scala.util.control.Breaks.{break, breakable} import scalation.linalgebra.Rotation._ import scalation.math.{double_exp, sign} import scalation.math.ExtremeD.{EPSILON, MIN_NORMAL, TOL} //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** The `SVD3` class is used to solve Singular Value Decomposition for bidiagonal matrices. * * It computes the singular values and, optionally, the right and/or left singular vectors * from the singular value decomposition 'SVD' of a real n-by-n (upper) bidiagonal matrix B * using the implicit zero-shift 'QR' algorithm. The 'SVD' of B has the form * * B = Q * S * P.t * * where S is the diagonal matrix of singular values, Q is an orthogonal matrix of * left singular vectors, and P is an orthogonal matrix of right singular vectors. * If left singular vectors are requested, this subroutine actually returns U*Q * instead of Q, and, if right singular vectors are requested, this subroutine * returns P.t * VT instead of P.T, for given real input matrices U and VT. When * U and VT are the orthogonal matrices that reduce a general matrix A to bidiagonal * form: A = U*B*VT, as computed by DGEBRD, then * * A = (U*Q) * S * (P.t*VT) * * is the 'SVD' of the general matrix A. A positive tolerance 'TOL' gives relative accuracy; * for absolute accuracy negate it. * * @see "Computing Small Singular Values of Bidiagonal Matrices With Guaranteed High Relative Accuracy," * @see J. Demmel and W. Kahan, LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. 11:5, pp. 873-912, Sept 1990) * * @see "Accurate singular values and differential qd algorithms," B. Parlett and V. Fernando, * @see Technical Report CPAM-554, Mathematics Department, University of California at Berkeley, July 1992 * * @see fortranwiki.org/fortran/show/svd * @see LAPACK SUBROUTINE DBDSQR (UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C, LDC, WORK, INFO) * * @param a the bidiagonal matrix A consisting of a diagonal and super-diagonal * @param vt the right orthogonal matrix from b = bidiagonalize (a) * @param u the left orthogonal matrix from b = bidiagonalize (a) */ class SVD3 (b: BidMatrixD, vt: MatrixD = new MatrixD (0, 0), u: MatrixD = new MatrixD (0, 0)) extends SVDecomp { private val DEBUG = true // debug flag private val ONLY_S = false // only interested in singular values, not vectors private val DO_SORT = false // do sort the singular values private val MAXITR = 6 // interation factor private val n = b.dim1 // the size (rows and columns) of the bidiagonal matrix B private val ncvt = vt.dim2 // the number of columns in matrix VT private val nru = u.dim1 // the number of rows in matrix U private val work = Array.ofDim [Double] (4*n) // workspace -- FIX: replace private val NM1 = n - 1 // one less than n private val NM12 = NM1 + NM1 // 2 * NM1 private val NM13 = NM12 + NM1 // 3 * NM1 private val maxit = MAXITR * n * n // maximum number of iterations allowed private val d = b.dg // the main diagonal private val e = b.sd // the super-diagonal (one above main) private var notflat = true // whether matrix B is yet to be deflated private var oldll = -1 // old saved lower index private var oldm = -1 // old saved upper index private var m = n-1 // m points to last element of unconverged part of matrix private var idir = 0 // the bulge chasing direction private var smax = d.mag max e.mag // estimate for largest singular value private var smin = 0.0 // estimate for smallest singular value private var smin_l = 0.0 // lower bound on smallest singular value private var cs = 1.0 // cosine in rotation matrix private var sn = 0.0 // sine in rotation matrix private var r = 1.0 // remaining nonzero value private var oldcs = 1.0 // old saved cosine in rotation matrix private var oldsn = 0.0 // old saved sine in rotation matrix private var sigmn = 0.0 // minimum singular value private var sigmx = 0.0 // maximum singular value private var sinr = 0.0 // sine right private var cosr = 1.0 // cosine right private var sinl = 0.0 // sine left private var cosl = 1.0 // cosine right private val thresh = calcThreshold () // threshold for setting values to zero def max3 (x: Double, y: Double, z: Double) = (x max y) max z //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Calculate the desired threshold for setting elements to zero. */ def calcThreshold (): Double = { if (TOL >= 0.0) { // relative accuracy desired var smin_oa = abs (d(0)) if (smin_oa > 0.0) { var mu = smin_oa breakable { for (i <- 1 until n) { mu = abs (d(i)) * (mu / (mu + abs(e(i-1)))) smin_oa = min (smin_oa, mu) if (smin_oa =~ 0.0) break }} // breakable for } // if smin_oa = smin_oa / sqrt (n.toDouble) return max (TOL * smin_oa, MAXITR * n * n * MIN_NORMAL) } // if max (abs (TOL) * smax, MAXITR * n * n * MIN_NORMAL) // absolute accuracy desired } // calcThreshold //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Factor matrix 'a' forming a diagonal matrix consisting of singular * values and return the singular values in a vector. */ override def factor (): Tuple3 [MatrixD, VectorD, MatrixD] = { (null, null, null) // FIX } // factor //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Deflate the bidiagonal matrix by iteratively turning super-diagonal elements * to zero. Then return the vector of singular values (i.e., the main diagonal). */ def deflate (): VectorD = { var go = true // go flag, continue deflation var iter = 0 // cumulative iterations of inner loop do { // begin main iteration loop var idir = 0 // bulge (nonzero e-values) chasing direction if (m == 0) go = false // upper index m is at lower limit, done if (go) { // find block (ll, m) to work on val ll = findBlock () // e(ll) through e(m-1) are nonzero, e(ll-1) is zero if (DEBUG) trace (iter, ll) if (ll >= 0) { if (ll == m-1) { // block is 2-by-2, handle as a special case deflate_2by2 (ll) go = false // no blocks left, done } else { // block >= 3-by-3 chooseDirection (ll) // choose bulge chasing direction if (idir == 1) convergeForward (ll) // apply convergence tests (set almost zero to zero) else convergeBackward (ll) oldll = ll // save ll and m oldm = m val shift = computeShift (ll) // compute amount of shift take_QRstep (ll, shift, idir) // take one QR step (use rotation to clear an e-value) iter += m - ll // increment iteration count } // if } // if } // if } while (go && iter < maxit) if (go) { // loop exited due to iteration limit val nz = countNonzeroElements () if (nz > 0) { println ("deflate: failed to converge - " + nz + " nonzero elements in super-diagonal") return null } // if } // if if (DEBUG) println ("diagonal d = " + d + "\\nsup-diag e = " + e) makePositive () // make singular values positive if (DO_SORT) sortValues () // sort singular values into decreasing order notflat = false // matrix B is now deflated d // return the singular values } // deflate //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Deflate the bidiagonal matrix by iteratively turning super-diagonal elements * to zero. Then return the vector of singular values and the matrices of * singular vectors. */ def deflateV (): Tuple3 [VectorD, MatrixD, MatrixD] = { if (ONLY_S) { println ("deflateV: cannot be called when ONLY_S is true, set it to false") return null } // if if (notflat) deflate () if (vt.dim1 < 1 || u.dim1 < 1) println ("deflateV: warning matrix vt or u is empty") (d, vt, u) } // deflateV //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Deflate 2 by 2 block, handle separately. * @param ll the lower index */ def deflate_2by2 (ll: Int) { val svd2 = new SVD_2by2 (d(m-1), e(m-1), d(m)) val d1 = svd2.deflateV () sigmn = d1._1; sigmx = d1._2; sinr = d1._3; cosr = d1._4; sinl = d1._5; cosl = d1._6 // CALL DLASV2 (d(m-1), e(m-1), d(m), sigmn, sigmx, sinr, cosr, sinl, cosl) d(m-1) = sigmx e(m-1) = 0.0 d(m) = sigmn if (! ONLY_S) { // compute singular vectors, if desired if (ncvt > 0) rot (ncvt, vt(m-1), vt(m), cosr, sinr) if (nru > 0) rotCol (nru, u, m-1, m, cosl, sinl) // if (ncvt > 0) CALL DROT (ncvt, vt(m-1, 1), ldvt, vt(m, 1), ldvt, cosr, sinr) // if (nru > 0) CALL DROT (nru, u(1, m-1), 1, u(1, m) , 1, cosl, sinl) } // if m -= 2 } // deflate_2by2 //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Count the number of nonzero elements in the super-diagonal. Call if the * maximum number of iterations exceeded, failure to converge */ def countNonzeroElements (): Int = { var nzero = 0 for (i <- 0 until n-1 if ! (e(i) =~ 0.0)) nzero += 1 if (nzero > 0) println ("deflate failed: nzero = " + nzero) nzero } // countNonzeroElements //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Trace this outer iteration. * @param iter the total iteration count * @param ll the lower index */ private def trace (iter: Int, ll: Int) { println ("iter = " + iter) println ("diagonal d = " + d) println ("sup-diag e = " + e) println ("block (ll, m) = " + (ll, m)) println ("-------------------------------------------") } // trace //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Find diagonal block '(ll, m)' of matrix to work on, returning the lower * index 'll'. Also decrements upper index 'm,' if needed. 'e(j)' must be zero * before and after the block. */ private def findBlock (): Int = { var ll = 0 // lower index of block if (TOL < 0.0 && abs (d(m)) <= thresh) d(m) = 0.0 smax = abs (d(m)) smin = smax // for (i <- 1 to m-1) { for (i <- 1 to m) { ll = m - i val abs_d = abs (d(ll)) val abs_e = abs (e(ll)) if (TOL < 0.0 && abs_d <= thresh) d(ll) = 0.0 if (abs_e <= thresh) { e(ll) = 0.0 // matrix splits since e(ll) = 0 if (ll == m-1) { m -= 1 // reduce upper index by 1 return -1 // return and try again to find block } // if return ll // return and try again } // if smin = min (smin, abs_d) smax = max3 (smax, abs_d, abs_e) } // for ll // return the lower index ll } // findBlock //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Working on new submatrix, choose shift direction * (from larger end diagonal element towards smaller). * @param ll the lower index */ private def chooseDirection (ll: Int) { if (ll > oldm || m < oldll) { if (abs (d(ll) ) >= abs (d(m))) { idir = 1 // chase bulge from top to bottom } else { idir = 2 // chase bulge from bottom to top } // if } // if } // chooseDirection //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Run convergence test in forward direction. First apply standard test to * bottom of matrix * @param ll the lower index */ private def convergeForward (ll: Int) { if (abs (e(m-1)) <= abs (TOL) * abs (d(m)) || (TOL < 0.0 && abs (e(m-1)) <= thresh)) { e(m-1) = 0.0 return } // if if (TOL >= 0.0 ) { // if relative accuracy desired, apply convergence criterion forward var mu = abs (d(ll)) smin_l = mu for (i <- ll to m-1) { if (abs (e(i)) <= TOL * mu) { e(i) = 0.0 return } // if mu = abs (d(i+1)) * (mu / (mu + abs (e(i)))) smin_l = min (smin_l, mu) } // for } // if } // convergeForward //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Run convergence test in backward direction. First apply standard test to * top of matrix. * @param ll the lower index */ private def convergeBackward (ll: Int) { if (abs (e(ll)) <= abs (TOL) * abs (d(ll)) || (TOL < 0.0 && abs (e(ll)) <= thresh)) { e(ll) = 0.0 return } // if if (TOL >= 0.0) { // if relative accuracy desired, apply convergence criterion backward var mu = abs (d(m)) smin_l = mu for (i <- m-1 to ll by -1) { if (abs (e(i)) <= TOL * mu) { e(i) = 0.0 return } // if mu = abs (d(i)) * (mu / (mu + abs (e(i)))) smin_l = min (smin_l, mu) } // for } // if } // convergeForward //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Compute shift by first, test if shifting would ruin relative accuracy, * and if so set the shift to zero. * @param ll the lower index */ private def computeShift (ll: Int): Double = { var shft = 0.0 var sll = 0.0 if (TOL >= 0.0 && n * TOL * (smin_l / smax ) <= max (EPSILON, 0.01 * TOL)) { return shft // use a zero shift to avoid loss of relative accuracy } // if // Compute the shift from 2-by-2 block at end of matrix if (idir == 1) { sll = abs (d(ll)) val svd2 = new SVD_2by2 (d(m-1), e(m-1), d(m)) val d1 = svd2.deflate (); shft = d1(0); r = d1(1) // CALL DLAS2 (d(m-1), e(m-1), d(m), shift, r) } else { sll = abs (d(m)) val svd2 = new SVD_2by2 (d(ll), e(ll), d(ll+1)) val d1 = svd2.deflate (); shft = d1(0); r = d1(1) // CALL DLAS2 (d(ll), e(ll), d(ll+1), shift, r) } // if // Test if shift negligible, and if so set to zero if (sll > 0.0 && shft*shft / sll*sll < EPSILON) shft = 0.0 shft } // computeShift //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Take one 'QR' step to push a super-diagonal element toward zero. * @param ll the lower index * @param shift the amount of shift * @param idir the direction, t2b or b2t */ private def take_QRstep (ll: Int, shift: Double, idir: Int) { if (shift =~ 0.0) { if (idir == 1) { zeroShiftQR_t2b (ll) } else { zeroShiftQR_b2t (ll) } // if } else { if (idir == 1) { shiftedQR_t2b (ll, shift) } else { shiftedQR_b2t (ll, shift) } // if } // if } // take_QRstep //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Chase bulge from top to bottom. Save cos's and'sin's for later singular * vector updates. * @param ll the lower index */ private def zeroShiftQR_t2b (ll: Int) { cs = 1.0 oldcs = 1.0 for (i <- ll to m-1) { val q1 = rotate (d(i) * cs, e(i)); cs = q1.cs; sn = q1.sn; r = q1.r // CALL DLARTG (d(i) * cs, e(i), cs, sn, r) if (i > ll) e(i-1) = oldsn * r val q2 = rotate (oldcs * r, d(i+1) * sn); oldcs = q2.cs; oldsn = q2.sn; d(i) = q2.r // CALL DLARTG (oldcs * r, d(i+1) * sn, oldcs, oldsn, d(i)) work(i-ll+1) = cs work(i-ll+1+NM1) = sn work(i-ll+1+NM12) = oldcs work(i-ll+1+NM13) = oldsn } // for val h = d(m) * cs d(m) = h * oldcs e(m-1) = h * oldsn if (abs (e(m-1)) <= thresh) e(m-1) = 0.0 // test convergence if (! ONLY_S) { // update singular vectors, if desired if (ncvt > 0) rotateV (true, true, m-ll+1, ncvt, work, 0, work, n-1, vt.slice(ll, vt.dim1)) if (nru > 0) rotateV (false, true, nru, m-ll+1, work, NM12, work, NM13, u.sliceCol(ll, u.dim2)) // if (ncvt > 0) CALL DLASR ('l', 'v', 'f', m-ll+1, ncvt, work(1), work(n), vt(ll, 1), ldvt) // if (nru > 0) CALL DLASR ('r', 'v', 'f', nru, m-ll+1, work(NM12+1), work(NM13+1), u(1, ll), ldu) } // if } // zeroShiftQR_t2b //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Chase bulge from bottom to top. Save cos's and sin's for later singular * vector updates. * @param ll the lower index */ private def zeroShiftQR_b2t (ll: Int) { cs = 1.0 oldcs = 1.0 for (i <- m to ll+1 by -1) { val q1 = rotate (d(i) * cs, e(i-1)); cs = q1.cs; sn = q1.sn; r = q1.r // CALL DLARTG (d(i) * cs, e(i-1), cs, sn, r) if( i < m ) e(i) = oldsn * r val q2 = rotate (oldcs * r, d(i-1) * sn); oldcs = q2.cs; oldsn = q2.sn; d(i) = q2.r // CALL DLARTG (oldcs * r, d(i-1) * sn, oldcs, oldsn, d(i)) work(i-ll) = cs work(i-ll+NM1) = -sn work(i-ll+NM12) = oldcs work(i-ll+NM13) = -oldsn } // for val h = d(ll) * cs d(ll) = h * oldcs e(ll) = h * oldsn if (abs (e(ll)) <= thresh) e(ll) = 0.0 // test convergence if (! ONLY_S) { // update singular vectors, if desired if (ncvt > 0) rotateV (true, false, m-ll+1, ncvt, work, NM12, work, NM13, vt.slice(ll, vt.dim1)) if (nru > 0) rotateV (false, false, nru, m-ll+1, work, 0, work, n-1, u.sliceCol(ll, u.dim2)) // if (ncvt > 0) CALL DLASR ('l', 'v', 'b', m-ll+1, ncvt, work(NM12+1), work(NM13+1), vt(ll, 1), ldvt) // if (nru > 0) CALL DLASR ('r', 'v', 'b', nru, m-ll+1, work(1), work(n), u(1, ll), ldu) } // if } // zeroShiftQR_b2t //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Using nonzero shift, chase bulge from top to bottom. Save cos's and * sin's for later singular vector updates * @param ll the lower index * @param shift the amount of shift */ private def shiftedQR_t2b (ll: Int, shift: Double) { var f = (abs (d(ll)) - shift) * (sign (1.0, d(ll)) + shift / d(ll)) var g = e(ll) for (i <- ll to m-1) { val q1 = rotate (f, g); cosr = q1.cs; sinr = q1.sn; r = q1.r // CALL DLARTG (f, g, cosr, sinr, r) if (i > ll) e(i-1) = r f = cosr * d(i) + sinr * e(i) e(i) = cosr * e(i) - sinr * d(i) g = sinr * d(i+1) d(i+1) = cosr * d(i+1) val q2 = rotate (f, g); cosl = q2.cs; sinl = q2.sn; r = q2.r // CALL DLARTG (f, g, cosl, sinl, r) d(i) = r f = cosl * e(i) + sinl * d(i+1) d(i+1) = cosl * d(i+1) - sinl * e(i) if (i < m-1) { g = sinl * e(i+1) e(i+1) = cosl * e(i+1) } // if work(i-ll+1) = cosr work(i-ll+1+NM1) = sinr work(i-ll+1+NM12) = cosl work(i-ll+1+NM13) = sinl } // for e(m-1) = f if (abs (e( m-1)) <= thresh ) e(m-1) = 0.0 // test convergence if (! ONLY_S) { // update singular vectors, if desired if (ncvt > 0) rotateV (true, true, m-ll+1, ncvt, work, 0, work, n-1, vt.slice(ll, vt.dim1)) if (nru > 0) rotateV (false, true, nru, m-ll+1, work, NM12, work, NM13, u.sliceCol(ll, u.dim2)) // if (ncvt > 0) CALL DLASR ('l', 'v', 'f', m-ll+1, ncvt, work(1), work(n), vt(ll, 1), ldvt) // if (nru > 0) CALL DLASR ('r', 'v', 'f', nru, m-ll+1, work(NM12+1), work(NM13+1), u(1, ll), ldu) } // if } // shiftedQR_t2b //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Using nonzero shift, chase bulge from bottom to top. Save cos's and * sin's for later singular vector updates * @param ll the lower index * @param shift the amount of shift */ private def shiftedQR_b2t (ll: Int, shift: Double) { var f = (abs (d(m)) - shift) * (sign(1.0, d(m)) + shift / d(m)) var g = e(m-1) for (i <- m to ll+1 by -1) { val q1 = rotate (f, g); cosr = q1.cs; sinr = q1.sn; r = q1.r // CALL DLARTG (f, g, cosr, sinr, r) if (i < m) e(i) = r f = cosr * d(i) + sinr * e(i-1) e(i-1) = cosr * e(i-1) - sinr * d(i) g = sinr * d(i-1) d(i-1) = cosr * d(i-1) val q2 = rotate (f, g); cosl = q2.cs; sinl = q2.sn; r = q2.r // CALL DLARTG (F, G, COSL, SINL, R) d(i) = r f = cosl * e(i-1) + sinl * d(i-1) d(i-1) = cosl * d(i-1) - sinl * e(i-1) if (i > ll+1) { g = sinl * e(i-2) e(i-2) = cosl * e(i-2) } // if work(i-ll) = cosr work(i-ll+NM1) = -sinr work(i-ll+NM12) = cosl work(i-ll+NM13) = -sinl } // for e(ll) = f if (abs (e(ll)) <= thresh) e(ll) = 0.0 // test convergence if (! ONLY_S) { // update singular vectors, if desired if (ncvt > 0) rotateV (true, false, m-ll+1, ncvt, work, NM12, work, NM13, vt.slice(ll, vt.dim1)) if (nru > 0) rotateV (false, false, nru, m-ll+1, work, 0, work, n-1, u.sliceCol(ll, u.dim2)) // if (ncvt > 0) CALL DLASR ('l', 'v', 'b', m-ll+1, ncvt, work(NM12+1), work(NM13+1), vt(ll, 1), ldvt) // if (nru > 0) CALL DLASR ('r', 'v', 'b', nru, m-ll+1, work(1), work(n), u(1, ll), ldu) } // if } // shiftedQR_b2t //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** All singular values converged, so make them positive. */ private def makePositive () { for (i <- 0 until n) { if (d(i) < 0.0) { d(i) = -d(i) if (! ONLY_S) { // change sign of singular vectors, if desired if (ncvt > 0) vt(i) *= -1.0 // if (ncvt > 0) CALL DSCAL (ncvt, -1.0, vt(i, 1), ldvt) } // if } // if } // for } // makePositive //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Sort the singular values into decreasing order. Selection sort is used * to minimize the swapping of singular vectors. If only sorting singular * values use 'sort2' that uses 'quicksort'. */ private def sortValues () { if (ONLY_S) { // only interested in singular values d.sort2 () // sort vector d in descending order (use if ignoring vectors) return } // if for (i <- 0 until n-1) { var k = i for (j <- i+1 until n if d(j) > d(k)) k = j if (i != k) { d.swap (i, k) // swap singular values in vector d if (ncvt > 0) vt.swap (i, k) // swap singular vectors (rows) in matrix vt if (nru > 0) u.swapCol (i, k) // swap singular vectors (columns) in matrix u // if (ncvt > 0) CALL DSWAP (ncvt, vt(isub, 1), ldvt, vt(n+1-i, 1), ldvt) // if (nru > 0) CALL DSWAP (nru, u(1, isub), 1, u(1, n+1-i), 1) } // if } // for } // sortValues } // SVD3 class //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** The `SVD3Test` is used to test the `SVD3` class. * Answer: singular values = (2.28825, 0.87403) * @see http://comnuan.com/cmnn01004/ */ object SVD3Test extends App { import MatrixD.eye val a = new MatrixD ((2, 2), 1.0, 1.0, 0.0, 2.0) val b = new BidMatrixD (a) // a is already biagonal val vt0 = eye (b.dim1) val u0 = eye (b.dim1) val svd = new SVD3 (b, vt0, u0) println ("----------------------------------------") println ("Test SVD3") println ("----------------------------------------") println ("a = " + a) println ("b = " + b) println ("----------------------------------------") println ("singular values = " + svd.deflate ()) val (s, vt, u) = svd.deflateV () println ("----------------------------------------") println ("singular val/vec = " + (s, vt, u)) println ("----------------------------------------") println ("u ** s * vt = " + u ** s * vt) } // SVD3Test //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** The `SVD3Test2` is used to test the `SVD3` class. * Answer: singular values = (3.82983, 1.91368, 0.81866) */ object SVD3Test2 extends App { import MatrixD.eye val a = new MatrixD ((3, 3), 1.0, 1.0, 0.0, 0.0, 2.0, 2.0, 0.0, 0.0, 3.0) val b = new BidMatrixD (a) // a is already biagonal val vt = eye (a.dim1) val u = eye (a.dim1) val svd = new SVD3 (b, vt, u) println ("----------------------------------------") println ("Test SVD3") println ("----------------------------------------") println ("a = " + a) println ("b = " + b) println ("----------------------------------------") println ("singular values = " + svd.deflate ()) // println ("----------------------------------------") // println ("singular val/vec = " + svd.deflateV ()) } // SVD3Test2
NBKlepp/fda
scalation_1.3/scalation_mathstat/src/main/scala/scalation/linalgebra/SVD3.scala
Scala
mit
29,510
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.shuffle.sort import java.io.{DataInputStream, File, FileInputStream, FileOutputStream} import org.mockito.{Mock, MockitoAnnotations} import org.mockito.Answers.RETURNS_SMART_NULLS import org.mockito.ArgumentMatchers.any import org.mockito.Mockito._ import org.mockito.invocation.InvocationOnMock import org.scalatest.BeforeAndAfterEach import org.apache.spark.{SparkConf, SparkFunSuite} import org.apache.spark.shuffle.{IndexShuffleBlockResolver, ShuffleBlockInfo} import org.apache.spark.storage._ import org.apache.spark.util.Utils class IndexShuffleBlockResolverSuite extends SparkFunSuite with BeforeAndAfterEach { @Mock(answer = RETURNS_SMART_NULLS) private var blockManager: BlockManager = _ @Mock(answer = RETURNS_SMART_NULLS) private var diskBlockManager: DiskBlockManager = _ private var tempDir: File = _ private val conf: SparkConf = new SparkConf(loadDefaults = false) override def beforeEach(): Unit = { super.beforeEach() tempDir = Utils.createTempDir() MockitoAnnotations.initMocks(this) when(blockManager.diskBlockManager).thenReturn(diskBlockManager) when(diskBlockManager.getFile(any[BlockId])).thenAnswer( (invocation: InvocationOnMock) => new File(tempDir, invocation.getArguments.head.toString)) when(diskBlockManager.localDirs).thenReturn(Array(tempDir)) } override def afterEach(): Unit = { try { Utils.deleteRecursively(tempDir) } finally { super.afterEach() } } test("commit shuffle files multiple times") { val shuffleId = 1 val mapId = 2 val idxName = s"shuffle_${shuffleId}_${mapId}_0.index" val resolver = new IndexShuffleBlockResolver(conf, blockManager) val lengths = Array[Long](10, 0, 20) val dataTmp = File.createTempFile("shuffle", null, tempDir) val out = new FileOutputStream(dataTmp) Utils.tryWithSafeFinally { out.write(new Array[Byte](30)) } { out.close() } resolver.writeIndexFileAndCommit(shuffleId, mapId, lengths, dataTmp) val indexFile = new File(tempDir.getAbsolutePath, idxName) val dataFile = resolver.getDataFile(shuffleId, mapId) assert(indexFile.exists()) assert(indexFile.length() === (lengths.length + 1) * 8) assert(dataFile.exists()) assert(dataFile.length() === 30) assert(!dataTmp.exists()) val lengths2 = new Array[Long](3) val dataTmp2 = File.createTempFile("shuffle", null, tempDir) val out2 = new FileOutputStream(dataTmp2) Utils.tryWithSafeFinally { out2.write(Array[Byte](1)) out2.write(new Array[Byte](29)) } { out2.close() } resolver.writeIndexFileAndCommit(shuffleId, mapId, lengths2, dataTmp2) assert(indexFile.length() === (lengths.length + 1) * 8) assert(lengths2.toSeq === lengths.toSeq) assert(dataFile.exists()) assert(dataFile.length() === 30) assert(!dataTmp2.exists()) // The dataFile should be the previous one val firstByte = new Array[Byte](1) val dataIn = new FileInputStream(dataFile) Utils.tryWithSafeFinally { dataIn.read(firstByte) } { dataIn.close() } assert(firstByte(0) === 0) // The index file should not change val indexIn = new DataInputStream(new FileInputStream(indexFile)) Utils.tryWithSafeFinally { indexIn.readLong() // the first offset is always 0 assert(indexIn.readLong() === 10, "The index file should not change") } { indexIn.close() } // remove data file dataFile.delete() val lengths3 = Array[Long](7, 10, 15, 3) val dataTmp3 = File.createTempFile("shuffle", null, tempDir) val out3 = new FileOutputStream(dataTmp3) Utils.tryWithSafeFinally { out3.write(Array[Byte](2)) out3.write(new Array[Byte](34)) } { out3.close() } resolver.writeIndexFileAndCommit(shuffleId, mapId, lengths3, dataTmp3) assert(indexFile.length() === (lengths3.length + 1) * 8) assert(lengths3.toSeq != lengths.toSeq) assert(dataFile.exists()) assert(dataFile.length() === 35) assert(!dataTmp3.exists()) // The dataFile should be the new one, since we deleted the dataFile from the first attempt val dataIn2 = new FileInputStream(dataFile) Utils.tryWithSafeFinally { dataIn2.read(firstByte) } { dataIn2.close() } assert(firstByte(0) === 2) // The index file should be updated, since we deleted the dataFile from the first attempt val indexIn2 = new DataInputStream(new FileInputStream(indexFile)) Utils.tryWithSafeFinally { indexIn2.readLong() // the first offset is always 0 assert(indexIn2.readLong() === 7, "The index file should be updated") } { indexIn2.close() } } test("SPARK-33198 getMigrationBlocks should not fail at missing files") { val resolver = new IndexShuffleBlockResolver(conf, blockManager) assert(resolver.getMigrationBlocks(ShuffleBlockInfo(Int.MaxValue, Long.MaxValue)).isEmpty) } }
shuangshuangwang/spark
core/src/test/scala/org/apache/spark/shuffle/sort/IndexShuffleBlockResolverSuite.scala
Scala
apache-2.0
5,788
package shapes.untouchable sealed trait Shape final case class Square(a: Double) extends Shape final case class Circle(r: Double) extends Shape
tupol/scala-patterns-tc-pml
src/main/scala/shapes/untouchable/Shape.scala
Scala
apache-2.0
148
package com.typesafe.slick.docs import scala.collection.mutable.ArrayBuffer import scala.concurrent.{Future, Await} import scala.concurrent.ExecutionContext.Implicits.global import scala.concurrent.duration.Duration //#imports import slick.jdbc.H2Profile.api._ //#imports import slick.jdbc.GetResult import slick.jdbc.JdbcProfile import slick.basic.{DatabaseConfig, StaticDatabaseConfig} /** A simple example that uses plain SQL queries against an in-memory * H2 database. The example data comes from Oracle's JDBC tutorial at * http://docs.oracle.com/javase/tutorial/jdbc/basics/tables.html. */ object PlainSQL extends App { var out = new ArrayBuffer[String]() def println(s: String): Unit = out += s //#getresult // Case classes for our data case class Supplier(id: Int, name: String, street: String, city: String, state: String, zip: String) case class Coffee(name: String, supID: Int, price: Double, sales: Int, total: Int) // Result set getters implicit val getSupplierResult = GetResult(r => Supplier(r.nextInt(), r.nextString(), r.nextString(), r.nextString(), r.nextString(), r.nextString())) implicit val getCoffeeResult = GetResult(r => Coffee(r.<<, r.<<, r.<<, r.<<, r.<<)) //#getresult val db = Database.forConfig("h2mem1") try { val f: Future[_] = { val a: DBIO[Unit] = DBIO.seq( createSuppliers, createCoffees, insertSuppliers, insertCoffees, printAll, printParameterized, coffeeByName("Colombian").map { s => println(s"Coffee Colombian: $s") }, deleteCoffee("Colombian").map { rows => println(s"Deleted $rows rows") }, coffeeByName("Colombian").map { s => println(s"Coffee Colombian: $s") } ) db.run(a) } Await.result(f, Duration.Inf) } finally db.close out.foreach(Console.out.println) //#sqlu def createCoffees: DBIO[Int] = sqlu"""create table coffees( name varchar not null, sup_id int not null, price double not null, sales int not null, total int not null, foreign key(sup_id) references suppliers(id))""" def createSuppliers: DBIO[Int] = sqlu"""create table suppliers( id int not null primary key, name varchar not null, street varchar not null, city varchar not null, state varchar not null, zip varchar not null)""" def insertSuppliers: DBIO[Unit] = DBIO.seq( // Insert some suppliers sqlu"insert into suppliers values(101, 'Acme, Inc.', '99 Market Street', 'Groundsville', 'CA', '95199')", sqlu"insert into suppliers values(49, 'Superior Coffee', '1 Party Place', 'Mendocino', 'CA', '95460')", sqlu"insert into suppliers values(150, 'The High Ground', '100 Coffee Lane', 'Meadows', 'CA', '93966')" ) //#sqlu def insertCoffees: DBIO[Unit] = { //#bind def insert(c: Coffee): DBIO[Int] = sqlu"insert into coffees values (${c.name}, ${c.supID}, ${c.price}, ${c.sales}, ${c.total})" //#bind // Insert some coffees. The SQL statement is the same for all calls: // "insert into coffees values (?, ?, ?, ?, ?)" //#sequence val inserts: Seq[DBIO[Int]] = Seq( Coffee("Colombian", 101, 7.99, 0, 0), Coffee("French_Roast", 49, 8.99, 0, 0), Coffee("Espresso", 150, 9.99, 0, 0), Coffee("Colombian_Decaf", 101, 8.99, 0, 0), Coffee("French_Roast_Decaf", 49, 9.99, 0, 0) ).map(insert) val combined: DBIO[Seq[Int]] = DBIO.sequence(inserts) combined.map(_.sum) //#sequence } def printAll: DBIO[Unit] = // Iterate through all coffees and output them sql"select * from coffees".as[Coffee].map { cs => println("Coffees:") for(c <- cs) println("* " + c.name + "\\t" + c.supID + "\\t" + c.price + "\\t" + c.sales + "\\t" + c.total) } def namesByPrice(price: Double): DBIO[Seq[(String, String)]] = { //#sql sql"""select c.name, s.name from coffees c, suppliers s where c.price < $price and s.id = c.sup_id""".as[(String, String)] //#sql } def supplierById(id: Int): DBIO[Seq[Supplier]] = sql"select * from suppliers where id = $id".as[Supplier] def printParameterized: DBIO[Unit] = { // Perform a join to retrieve coffee names and supplier names for // all coffees costing less than $9.00 namesByPrice(9.0).flatMap { l2 => println("Parameterized StaticQuery:") for (t <- l2) println("* " + t._1 + " supplied by " + t._2) supplierById(49).map(s => println(s"Supplier #49: $s")) } } def coffeeByName(name: String): DBIO[Option[Coffee]] = { //#literal val table = "coffees" sql"select * from #$table where name = $name".as[Coffee].headOption //#literal } def deleteCoffee(name: String): DBIO[Int] = sqlu"delete from coffees where name = $name" } /* Can't test this properly because reference.conf is not on the compiler class path when it doesn't come from a JAR: @StaticDatabaseConfig("file:common-test-resources/application.conf#tsql") object TypedSQL extends App { //#staticdatabaseconfig val dc = DatabaseConfig.forAnnotation[JdbcProfile] import dc.profile.api._ //#staticdatabaseconfig //#tsql def getSuppliers(id: Int): DBIO[Seq[(Int, String, String, String, String, String)]] = tsql"select * from suppliers where id > $id" //#tsql //#staticdatabaseconfig val db = dc.db //#staticdatabaseconfig try { val a: DBIO[Unit] = getSuppliers(50).map { s => println("All suppliers > 50:") s.foreach(println) } val f: Future[Unit] = db.run(a) Await.result(f, Duration.Inf) } finally db.close } */
slick/slick
doc/code/PlainSQL.scala
Scala
bsd-2-clause
5,715
trait X { def foo: PartialFunction[Int, Int] } trait Y extends X { // Inferred type was AbstractPartialFunction[Int, Int] with Serializable abstract override def foo = { case i => super.foo(i) * 2 } } trait Z extends X { // ditto abstract override def foo = { case i => super.foo(i) + 3 } } trait Comb extends Y with Z { // ... which led to a type error here. abstract override def foo: PartialFunction[Int, Int] = { case i => super.foo(i) - 2 } }
som-snytt/dotty
tests/pos/t6575a.scala
Scala
apache-2.0
462
package domain.user import domain.{ Entity, Enum, EnumEntry, ValueObject } /** * ユーザ情報. * @param userId ユーザID * @param name ユーザ名 * @param loginId ログインID * @param authority ユーザ権限 * @param lockVersion lockVersion */ case class User( userId: Option[UserId], loginId: String, name: String, authority: UserAuthority, lockVersion: Long = 1L ) extends Entity[User] { /** * @inheritdoc */ override def sameIdentityAs(other: User): Boolean = (for { thisId <- this.userId otherId <- other.userId } yield thisId.sameValueAs(otherId)) getOrElse false /** ユーザ権限取得. */ def authentications: Seq[UserAuthority] = Seq(authority) } //ユーザに対する権限 sealed abstract class UserAuthority(override val code: String) extends EnumEntry object UserAuthority extends Enum[UserAuthority] { /** Application管理者. */ case object ApplicationAdministrator extends UserAuthority("1") /** 一般. */ case object Normal extends UserAuthority("0") protected val values = Seq(ApplicationAdministrator, Normal) }
nemuzuka/vss-kanban
src/main/scala/domain/user/User.scala
Scala
mit
1,115
/* * Copyright 2013 - 2020 Outworkers Ltd. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.outworkers.phantom.finagle.query.prepared import com.outworkers.phantom.PhantomSuite import com.outworkers.phantom.builder.query.prepared.ExecutablePreparedQuery import com.outworkers.phantom.finagle._ import com.outworkers.phantom.tables.Recipe import com.outworkers.util.samplers._ class BatchablePreparedInsertQueryTest extends PhantomSuite with TwitterFutures { override def beforeAll(): Unit = { super.beforeAll() val _ = database.recipes.createSchema() } it should "serialize an prepared batch query" in { val sample1 = gen[Recipe] val sample2 = gen[Recipe] val query = database.recipes.insert .p_value(_.uid, ?) .p_value(_.url, ?) .p_value(_.servings, ?) .p_value(_.ingredients, ?) .p_value(_.description, ?) .p_value(_.lastcheckedat, ?) .p_value(_.props, ?) .prepare() def storePrepared(recipe: Recipe): ExecutablePreparedQuery = query.bind( recipe.uid, recipe.url, recipe.servings, recipe.ingredients, recipe.description, recipe.lastCheckedAt, recipe.props ) val exec1 = storePrepared(sample1) val exec2 = storePrepared(sample2) val chain = for { truncate <- database.recipes.truncate.future() store <- Batch.unlogged.add(exec1, exec2).future() get <- database.recipes.select.fetch() } yield get whenReady(chain) { res => res should contain theSameElementsAs Seq(sample1, sample2) } } }
outworkers/phantom
phantom-finagle/src/test/scala/com/outworkers/phantom/finagle/query/prepared/BatchablePreparedInsertQueryTest.scala
Scala
apache-2.0
2,098
package tastytest object AnythingIsPossible { class Box[A](val a: A) class Class extends Box({ class X { final val x = Map(("", 3)) } ; val foo = new X(); foo.x: foo.x.type }) class Lambda extends Box((x: Int) => (y: String) => y.length == x) object Zero { def unapply[A: Numeric](a: A): Boolean = implicitly[Numeric[A]].zero == a } type IntSpecial = Int @unchecked class Match extends Box((0: @unchecked) match { case n if n > 50 => "big" case 26 | 24 => "26 | 24" case a @ _ if a > 0 => "small" case Zero() => "zero" case -1 => throw new IllegalArgumentException("-1") case _: IntSpecial => "negative" }) class While extends Box(while (false) {}) class Try extends Box(try throw new IllegalArgumentException("nothing") catch { case e: Exception => e.getMessage() }) class Assign extends Box({ var t = 0; t = t + 1 }) trait SomeSuper { def foo: Double = 23.451 } object Within extends SomeSuper { class Super extends Box(super[SomeSuper].foo) } }
lrytz/scala
test/tasty/run/src-3/tastytest/AnythingIsPossible.scala
Scala
apache-2.0
1,058
package com.twitter.finatra.example import java.util.concurrent.atomic.AtomicInteger import javax.inject.Singleton @Singleton class TestQueue extends Queue(Integer.MAX_VALUE) { val addCounter: AtomicInteger = new AtomicInteger(0) override def add(value: String): Boolean = { addCounter.incrementAndGet() super.add(value) } }
twitter/finatra
examples/injectable-twitter-server/scala/src/test/scala/com/twitter/finatra/example/TestQueue.scala
Scala
apache-2.0
342
/* * Copyright 2017-2020 47 Degrees, LLC. <http://www.47deg.com> * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package higherkindness.mu.format trait Deserialiser[A] { def deserialise(a: Array[Byte]): A }
frees-io/freestyle-rpc
modules/kafka/src/main/scala/higherkindness/mu/format/Deserialiser.scala
Scala
apache-2.0
726
package scalaz.stream.mongodb.query import com.mongodb.{BasicDBObject, DBObject} import collection.JavaConverters._ /** * Simple key-value query to mongo */ case class BasicQuery(o: DBObject = new BasicDBObject) { /** * Normalizes query so in case there are no operands between predicates, `$and` is injected * Returns tuple for each operation. */ def normalize: (String, Iterable[DBObject]) = o.keySet().asScala.find(_ match { case "$and" | "$or" | "$nor" => true case _ => false }) match { case Some(op) => o.get(op) match { case l: java.util.List[DBObject@unchecked] => { (op, l.asScala) } case o => sys.error(s"Unexpected content of $op : $o ") } case None => ("$and", o.keySet().asScala.map(k => new BasicDBObject().append(k, o.get(k)))) } } /** * Helper to build Basic query in case there are multiple key conditions. * In such case we must enforce `$and` between predicates */ object BasicQuery { def apply[A](pairs: QueryPair[A]*): BasicQuery = { val o = new BasicDBObject() if (pairs.map(_.key).distinct.size != pairs.size) { //indicates multiple $and condition, we have to force $and here o.append("$and", pairs.map { case qp: QueryPair[_] => qp.append(new BasicDBObject()) }.asJava) } else { pairs.foreach { case qp: QueryPair[_] => qp.append(o) } } BasicQuery(o) } }
Spinoco/scalaz-stream-mongodb
core/src/main/scala/scalaz/stream/mongodb/query/BasicQuery.scala
Scala
mit
1,409
package filodb.query.exec.aggregator import filodb.core.metadata.Column.ColumnType import filodb.core.query._ import filodb.memory.format.RowReader /** * Map: Every sample is mapped to three values: (a) the stddev value "0" and (b) the value itself * (c) and its count value "1" * ReduceAggregate: Similar as reduceAggregate for stdvar, since stddev = sqrt(stdvar) * ReduceMappedRow: Same as ReduceAggregate * Present: The current stddev is presented. Mean and Count value is dropped from presentation */ object StddevRowAggregator extends RowAggregator { class StddevHolder(var timestamp: Long = 0L, var stddev: Double = Double.NaN, var mean: Double = Double.NaN, var count: Long = 0) extends AggregateHolder { val row = new StdValAggTransientRow() def toRowReader: MutableRowReader = { row.setLong(0, timestamp) row.setDouble(1, stddev) row.setDouble(2, mean) row.setLong(3, count) row } def resetToZero(): Unit = { count = 0; mean = Double.NaN; stddev = Double.NaN } } type AggHolderType = StddevHolder def zero: StddevHolder = new StddevHolder() def newRowToMapInto: MutableRowReader = new StdValAggTransientRow() def map(rvk: RangeVectorKey, item: RowReader, mapInto: MutableRowReader): RowReader = { mapInto.setLong(0, item.getLong(0)) mapInto.setDouble(1, 0L) mapInto.setDouble(2, item.getDouble(1)) mapInto.setLong(3, if (item.getDouble(1).isNaN) 0L else 1L) mapInto } def reduceAggregate(acc: StddevHolder, aggRes: RowReader): StddevHolder = { acc.timestamp = aggRes.getLong(0) if (!aggRes.getDouble(1).isNaN && !aggRes.getDouble(2).isNaN) { if (acc.mean.isNaN) acc.mean = 0d if (acc.stddev.isNaN) acc.stddev = 0d val aggStddev = aggRes.getDouble(1) val aggMean = aggRes.getDouble(2) val aggCount = aggRes.getLong(3) val newMean = (acc.mean * acc.count + aggMean * aggCount) / (acc.count + aggCount) val accSquareSum = (Math.pow(acc.stddev, 2) + math.pow(acc.mean, 2)) * acc.count val aggSquareSum = (Math.pow(aggStddev, 2) + math.pow(aggMean, 2)) * aggCount val newStddev = Math.pow((accSquareSum + aggSquareSum) / (acc.count + aggCount) - math.pow(newMean, 2), 0.5) acc.stddev = newStddev acc.mean = newMean acc.count += aggCount } acc } // ignore last two column. we rely on schema change def present(aggRangeVector: RangeVector, limit: Int, rangeParams: RangeParams): Seq[RangeVector] = Seq(aggRangeVector) def reductionSchema(source: ResultSchema): ResultSchema = { source.copy(source.columns :+ ColumnInfo("mean", ColumnType.DoubleColumn) :+ ColumnInfo("count", ColumnType.LongColumn)) } def presentationSchema(reductionSchema: ResultSchema): ResultSchema = { // drop last two column with mean and count reductionSchema.copy(reductionSchema.columns.filterNot(c => (c.name.equals("mean") || c.name.equals("count")))) } }
filodb/FiloDB
query/src/main/scala/filodb/query/exec/aggregator/StddevRowAggregator.scala
Scala
apache-2.0
3,015
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.framework.operator import org.apache.spark.streaming.Seconds import org.apache.spark.streaming.dstream.DStream abstract class AbstractOperator extends Serializable { def process(stream: DStream[Event]) def windowStream[U](stream: DStream[U], window: (Option[Long], Option[Long])) = { window match { case (Some(a), Some(b)) => stream.window(Seconds(a), Seconds(b)) case (Some(a), None) => stream.window(Seconds(a)) case _ => stream } } }
linzhe/matrix
src/main/scala/org/apache/spark/framework/operator/AbstractOperator.scala
Scala
apache-2.0
1,322