import os import datasets from bs4 import ResultSet, BeautifulSoup from datasets import DownloadManager _CITATION = """\ @report{Magnini2021, author = {Bernardo Magnini and BegoƱa Altuna and Alberto Lavelli and Manuela Speranza and Roberto Zanoli and Fondazione Bruno Kessler}, keywords = {Clinical data,clinical enti-ties,corpus,multilingual,temporal information}, title = {The E3C Project: European Clinical Case Corpus El proyecto E3C: European Clinical Case Corpus}, url = {https://uts.nlm.nih.gov/uts/umls/home}, year = {2021}, } """ _DESCRIPTION = """\ The European Clinical Case Corpus (E3C) project aims at collecting and \ annotating a large corpus of clinical documents in five European languages (Spanish, \ Basque, English, French and Italian), which will be freely distributed. Annotations \ include temporal information, to allow temporal reasoning on chronologies, and \ information about clinical entities based on medical taxonomies, to be used for semantic reasoning. """ _URL = "https://github.com/hltfbk/E3C-Corpus/archive/refs/tags/v2.0.0.zip" class E3CConfig(datasets.BuilderConfig): """BuilderConfig for SQUAD.""" def __init__(self, **kwargs): """BuilderConfig for SQUAD. Args: **kwargs: keyword arguments forwarded to super. """ self.layer = kwargs.pop("layer") super(E3CConfig, self).__init__(**kwargs) class E3C(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.1.0") BUILDER_CONFIGS = [ E3CConfig( name="en", version=VERSION, description="this is the split of the layer 1 for English of E3C dataset", layer="1", ), E3CConfig( name="es", version=VERSION, description="this is the split of the layer 1 for Spanish of E3C dataset", layer="1", ), E3CConfig( name="eu", version=VERSION, description="this is the split of the layer 1 for Basque of E3C dataset", layer="1", ), E3CConfig( name="fr", version=VERSION, description="this is the split of the layer 1 for French of E3C dataset", layer="1", ), E3CConfig( name="it", version=VERSION, description="this is the split of the layer 1 for Italian of E3C dataset", layer="1", ), ] def _info(self): """This method specifies the DatasetInfo which contains information and typings.""" features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "CLINENTITY", "EVENT", "ACTOR", "BODYPART", "TIMEX3", "RML", ], ), ), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, citation=_CITATION, supervised_keys=None, ) def _split_generators(self, dl_manager: DownloadManager) -> list[datasets.SplitGenerator]: """Returns SplitGenerators who contains all the difference splits of the dataset. Each language has its own split and each split has 3 different layers (sub-split): - layer 1: full manual annotation of clinical entities, temporal information and factuality, for benchmarking and linguistic analysis. - layer 2: semi-automatic annotation of clinical entities - layer 3: non-annotated documents Args: dl_manager: A `datasets.utils.DownloadManager` that can be used to download and extract URLs. Returns: A list of `datasets.SplitGenerator`. Contains all subsets of the dataset depending on the language and the layer. """ url = _URL data_dir = dl_manager.download_and_extract(url) language = { "en": "English", "es": "Spanish", "eu": "Basque", "fr": "French", "it": "Italian", }[self.config.name] return [ datasets.SplitGenerator( name=self.config.name, gen_kwargs={ "filepath": os.path.join( data_dir, "E3C-Corpus-2.0.0/data_annotation", language, f"layer{self.config.layer}", ), }, ), ] @staticmethod def get_annotations(entities: ResultSet, text: str) -> list: """Extract the offset, the text and the type of the entity. Args: entities: The entities to extract. text: The text of the document. Returns: A list of list containing the offset, the text and the type of the entity. """ return [ [ int(entity.get("begin")), int(entity.get("end")), text[int(entity.get("begin")) : int(entity.get("end"))], ] for entity in entities ] def get_parsed_data(self, filepath: str): """Parse the data from the E3C dataset and store it in a dictionary. Iterate over the files in the dataset and parse for each file the following entities: - CLINENTITY - EVENT - ACTOR - BODYPART - TIMEX3 - RML for each entity, we extract the offset, the text and the type of the entity. Args: filepath: The path to the folder containing the files to parse. """ for root, _, files in os.walk(filepath): for file in files: with open(f"{root}/{file}") as soup_file: soup = BeautifulSoup(soup_file, "xml") text = soup.find("cas:Sofa").get("sofaString") yield { "CLINENTITY": self.get_annotations( soup.find_all("custom:CLINENTITY"), text ), "EVENT": self.get_annotations(soup.find_all("custom:EVENT"), text), "ACTOR": self.get_annotations(soup.find_all("custom:ACTOR"), text), "BODYPART": self.get_annotations(soup.find_all("custom:BODYPART"), text), "TIMEX3": self.get_annotations(soup.find_all("custom:TIMEX3"), text), "RML": self.get_annotations(soup.find_all("custom:RML"), text), "SENTENCE": self.get_annotations(soup.find_all("type4:Sentence"), text), "TOKENS": self.get_annotations(soup.find_all("type4:Token"), text), } def _generate_examples(self, filepath) -> tuple[str, dict]: """Yields examples as (key, example) tuples. Args: filepath: The path to the folder containing the files to parse. Yields: The unique id of an example and the example itself containing tokens and ner_tags in IOB format. """ guid = 0 for content in self.get_parsed_data(filepath): for sentence in content["SENTENCE"]: filtered_tokens = list( filter( lambda token: token[0] >= sentence[0] and token[1] <= sentence[1], content["TOKENS"], ) ) labels = ["O"] * len(filtered_tokens) for entity_type in [ "CLINENTITY", "EVENT", "ACTOR", "BODYPART", "TIMEX3", "RML", ]: if len(content[entity_type]) != 0 and sentence[1] >= content[entity_type][0][0]: for entities in list( filter( lambda entity: sentence[0] <= entity[0] <= sentence[1], content[entity_type], ) ): annotated_tokens = [ idx_token for idx_token, token in enumerate(filtered_tokens) if token[0] >= entities[0] and token[1] <= entities[1] ] for idx_token in annotated_tokens: if idx_token == annotated_tokens[0]: labels[idx_token] = f"{entity_type}" else: labels[idx_token] = f"{entity_type}" guid += 1 yield guid, { "tokens": list(map(lambda tokens: tokens[2], filtered_tokens)), "ner_tags": labels, }