Upload dataset.py
Browse files- dataset.py +240 -0
dataset.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
from bs4 import ResultSet, BeautifulSoup
|
5 |
+
from datasets import DownloadManager
|
6 |
+
|
7 |
+
_CITATION = """\
|
8 |
+
@report{Magnini2021,
|
9 |
+
author = {Bernardo Magnini and Begoña Altuna and Alberto Lavelli and Manuela Speranza
|
10 |
+
and Roberto Zanoli and Fondazione Bruno Kessler},
|
11 |
+
keywords = {Clinical data,clinical enti-ties,corpus,multilingual,temporal information},
|
12 |
+
title = {The E3C Project:
|
13 |
+
European Clinical Case Corpus El proyecto E3C: European Clinical Case Corpus},
|
14 |
+
url = {https://uts.nlm.nih.gov/uts/umls/home},
|
15 |
+
year = {2021},
|
16 |
+
}
|
17 |
+
|
18 |
+
"""
|
19 |
+
|
20 |
+
_DESCRIPTION = """\
|
21 |
+
The European Clinical Case Corpus (E3C) project aims at collecting and \
|
22 |
+
annotating a large corpus of clinical documents in five European languages (Spanish, \
|
23 |
+
Basque, English, French and Italian), which will be freely distributed. Annotations \
|
24 |
+
include temporal information, to allow temporal reasoning on chronologies, and \
|
25 |
+
information about clinical entities based on medical taxonomies, to be used for semantic reasoning.
|
26 |
+
"""
|
27 |
+
|
28 |
+
_URL = "https://github.com/hltfbk/E3C-Corpus/archive/refs/tags/v2.0.0.zip"
|
29 |
+
|
30 |
+
|
31 |
+
class E3CConfig(datasets.BuilderConfig):
|
32 |
+
"""BuilderConfig for SQUAD."""
|
33 |
+
|
34 |
+
def __init__(self, **kwargs):
|
35 |
+
"""BuilderConfig for SQUAD.
|
36 |
+
Args:
|
37 |
+
**kwargs: keyword arguments forwarded to super.
|
38 |
+
"""
|
39 |
+
self.layer = kwargs.pop("layer")
|
40 |
+
super(E3CConfig, self).__init__(**kwargs)
|
41 |
+
|
42 |
+
|
43 |
+
class E3C(datasets.GeneratorBasedBuilder):
|
44 |
+
VERSION = datasets.Version("1.1.0")
|
45 |
+
BUILDER_CONFIGS = [
|
46 |
+
E3CConfig(
|
47 |
+
name="en",
|
48 |
+
version=VERSION,
|
49 |
+
description="this is the split of the layer 1 for English of E3C dataset",
|
50 |
+
layer="1",
|
51 |
+
),
|
52 |
+
E3CConfig(
|
53 |
+
name="es",
|
54 |
+
version=VERSION,
|
55 |
+
description="this is the split of the layer 1 for Spanish of E3C dataset",
|
56 |
+
layer="1",
|
57 |
+
),
|
58 |
+
E3CConfig(
|
59 |
+
name="eu",
|
60 |
+
version=VERSION,
|
61 |
+
description="this is the split of the layer 1 for Basque of E3C dataset",
|
62 |
+
layer="1",
|
63 |
+
),
|
64 |
+
E3CConfig(
|
65 |
+
name="fr",
|
66 |
+
version=VERSION,
|
67 |
+
description="this is the split of the layer 1 for French of E3C dataset",
|
68 |
+
layer="1",
|
69 |
+
),
|
70 |
+
E3CConfig(
|
71 |
+
name="it",
|
72 |
+
version=VERSION,
|
73 |
+
description="this is the split of the layer 1 for Italian of E3C dataset",
|
74 |
+
layer="1",
|
75 |
+
),
|
76 |
+
]
|
77 |
+
|
78 |
+
def _info(self):
|
79 |
+
"""This method specifies the DatasetInfo which contains information and typings."""
|
80 |
+
features = datasets.Features(
|
81 |
+
{
|
82 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
83 |
+
"ner_tags": datasets.Sequence(
|
84 |
+
datasets.features.ClassLabel(
|
85 |
+
names=[
|
86 |
+
"O",
|
87 |
+
"CLINENTITY",
|
88 |
+
"EVENT",
|
89 |
+
"ACTOR",
|
90 |
+
"BODYPART",
|
91 |
+
"TIMEX3",
|
92 |
+
"RML",
|
93 |
+
],
|
94 |
+
),
|
95 |
+
),
|
96 |
+
}
|
97 |
+
)
|
98 |
+
return datasets.DatasetInfo(
|
99 |
+
description=_DESCRIPTION,
|
100 |
+
features=features,
|
101 |
+
citation=_CITATION,
|
102 |
+
supervised_keys=None,
|
103 |
+
)
|
104 |
+
|
105 |
+
def _split_generators(self, dl_manager: DownloadManager) -> list[datasets.SplitGenerator]:
|
106 |
+
"""Returns SplitGenerators who contains all the difference splits of the dataset.
|
107 |
+
Each language has its own split and each split has 3 different layers (sub-split):
|
108 |
+
- layer 1: full manual annotation of clinical entities, temporal information and
|
109 |
+
factuality, for benchmarking and linguistic analysis.
|
110 |
+
- layer 2: semi-automatic annotation of clinical entities
|
111 |
+
- layer 3: non-annotated documents
|
112 |
+
Args:
|
113 |
+
dl_manager: A `datasets.utils.DownloadManager` that can be used to download and
|
114 |
+
extract URLs.
|
115 |
+
Returns:
|
116 |
+
A list of `datasets.SplitGenerator`. Contains all subsets of the dataset depending on
|
117 |
+
the language and the layer.
|
118 |
+
"""
|
119 |
+
url = _URL
|
120 |
+
data_dir = dl_manager.download_and_extract(url)
|
121 |
+
language = {
|
122 |
+
"en": "English",
|
123 |
+
"es": "Spanish",
|
124 |
+
"eu": "Basque",
|
125 |
+
"fr": "French",
|
126 |
+
"it": "Italian",
|
127 |
+
}[self.config.name]
|
128 |
+
return [
|
129 |
+
datasets.SplitGenerator(
|
130 |
+
name=self.config.name,
|
131 |
+
gen_kwargs={
|
132 |
+
"filepath": os.path.join(
|
133 |
+
data_dir,
|
134 |
+
"E3C-Corpus-2.0.0/data_annotation",
|
135 |
+
language,
|
136 |
+
f"layer{self.config.layer}",
|
137 |
+
),
|
138 |
+
},
|
139 |
+
),
|
140 |
+
]
|
141 |
+
|
142 |
+
@staticmethod
|
143 |
+
def get_annotations(entities: ResultSet, text: str) -> list:
|
144 |
+
"""Extract the offset, the text and the type of the entity.
|
145 |
+
|
146 |
+
Args:
|
147 |
+
entities: The entities to extract.
|
148 |
+
text: The text of the document.
|
149 |
+
Returns:
|
150 |
+
A list of list containing the offset, the text and the type of the entity.
|
151 |
+
"""
|
152 |
+
return [
|
153 |
+
[
|
154 |
+
int(entity.get("begin")),
|
155 |
+
int(entity.get("end")),
|
156 |
+
text[int(entity.get("begin")) : int(entity.get("end"))],
|
157 |
+
]
|
158 |
+
for entity in entities
|
159 |
+
]
|
160 |
+
|
161 |
+
def get_parsed_data(self, filepath: str):
|
162 |
+
"""Parse the data from the E3C dataset and store it in a dictionary.
|
163 |
+
Iterate over the files in the dataset and parse for each file the following entities:
|
164 |
+
- CLINENTITY
|
165 |
+
- EVENT
|
166 |
+
- ACTOR
|
167 |
+
- BODYPART
|
168 |
+
- TIMEX3
|
169 |
+
- RML
|
170 |
+
for each entity, we extract the offset, the text and the type of the entity.
|
171 |
+
|
172 |
+
Args:
|
173 |
+
filepath: The path to the folder containing the files to parse.
|
174 |
+
"""
|
175 |
+
for root, _, files in os.walk(filepath):
|
176 |
+
for file in files:
|
177 |
+
with open(f"{root}/{file}") as soup_file:
|
178 |
+
soup = BeautifulSoup(soup_file, "xml")
|
179 |
+
text = soup.find("cas:Sofa").get("sofaString")
|
180 |
+
yield {
|
181 |
+
"CLINENTITY": self.get_annotations(
|
182 |
+
soup.find_all("custom:CLINENTITY"), text
|
183 |
+
),
|
184 |
+
"EVENT": self.get_annotations(soup.find_all("custom:EVENT"), text),
|
185 |
+
"ACTOR": self.get_annotations(soup.find_all("custom:ACTOR"), text),
|
186 |
+
"BODYPART": self.get_annotations(soup.find_all("custom:BODYPART"), text),
|
187 |
+
"TIMEX3": self.get_annotations(soup.find_all("custom:TIMEX3"), text),
|
188 |
+
"RML": self.get_annotations(soup.find_all("custom:RML"), text),
|
189 |
+
"SENTENCE": self.get_annotations(soup.find_all("type4:Sentence"), text),
|
190 |
+
"TOKENS": self.get_annotations(soup.find_all("type4:Token"), text),
|
191 |
+
}
|
192 |
+
|
193 |
+
def _generate_examples(self, filepath) -> tuple[str, dict]:
|
194 |
+
"""Yields examples as (key, example) tuples.
|
195 |
+
Args:
|
196 |
+
filepath: The path to the folder containing the files to parse.
|
197 |
+
Yields:
|
198 |
+
The unique id of an example and the example itself containing tokens and ner_tags in
|
199 |
+
IOB format.
|
200 |
+
"""
|
201 |
+
guid = 0
|
202 |
+
for content in self.get_parsed_data(filepath):
|
203 |
+
for sentence in content["SENTENCE"]:
|
204 |
+
filtered_tokens = list(
|
205 |
+
filter(
|
206 |
+
lambda token: token[0] >= sentence[0] and token[1] <= sentence[1],
|
207 |
+
content["TOKENS"],
|
208 |
+
)
|
209 |
+
)
|
210 |
+
labels = ["O"] * len(filtered_tokens)
|
211 |
+
for entity_type in [
|
212 |
+
"CLINENTITY",
|
213 |
+
"EVENT",
|
214 |
+
"ACTOR",
|
215 |
+
"BODYPART",
|
216 |
+
"TIMEX3",
|
217 |
+
"RML",
|
218 |
+
]:
|
219 |
+
if len(content[entity_type]) != 0 and sentence[1] >= content[entity_type][0][0]:
|
220 |
+
for entities in list(
|
221 |
+
filter(
|
222 |
+
lambda entity: sentence[0] <= entity[0] <= sentence[1],
|
223 |
+
content[entity_type],
|
224 |
+
)
|
225 |
+
):
|
226 |
+
annotated_tokens = [
|
227 |
+
idx_token
|
228 |
+
for idx_token, token in enumerate(filtered_tokens)
|
229 |
+
if token[0] >= entities[0] and token[1] <= entities[1]
|
230 |
+
]
|
231 |
+
for idx_token in annotated_tokens:
|
232 |
+
if idx_token == annotated_tokens[0]:
|
233 |
+
labels[idx_token] = f"{entity_type}"
|
234 |
+
else:
|
235 |
+
labels[idx_token] = f"{entity_type}"
|
236 |
+
guid += 1
|
237 |
+
yield guid, {
|
238 |
+
"tokens": list(map(lambda tokens: tokens[2], filtered_tokens)),
|
239 |
+
"ner_tags": labels,
|
240 |
+
}
|