Datasets:

Languages:
English
License:
File size: 10,467 Bytes
333b52e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0092b14
 
333b52e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46b0783
 
 
 
 
 
c03750c
46b0783
 
 
 
 
 
 
 
 
 
 
333b52e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import itertools
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
from bioc import biocxml

from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
from .bigbiohub import get_texts_and_offsets_from_bioc_ann


_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@article{islamaj2021nlm,
  title        = {
    NLM-Gene, a richly annotated gold standard dataset for gene entities that
    addresses ambiguity and multi-species gene recognition
  },
  author       = {
    Islamaj, Rezarta and Wei, Chih-Hsuan and Cissel, David and Miliaras,
    Nicholas and Printseva, Olga and Rodionov, Oleg and Sekiya, Keiko and Ward,
    Janice and Lu, Zhiyong
  },
  year         = 2021,
  journal      = {Journal of Biomedical Informatics},
  publisher    = {Elsevier},
  volume       = 118,
  pages        = 103779
}
"""

_DATASETNAME = "nlm_gene"
_DISPLAYNAME = "NLM-Gene"

_DESCRIPTION = """\
NLM-Gene consists of 550 PubMed articles, from 156 journals, and contains more \
than 15 thousand unique gene names, corresponding to more than five thousand \
gene identifiers (NCBI Gene taxonomy). This corpus contains gene annotation data \
from 28 organisms. The annotated articles contain on average 29 gene names, and \
10 gene identifiers per article. These characteristics demonstrate that this \
article set is an important benchmark dataset to test the accuracy of gene \
recognition algorithms both on multi-species and ambiguous data. The NLM-Gene \
corpus will be invaluable for advancing text-mining techniques for gene \
identification tasks in biomedical text.
"""

_HOMEPAGE = "https://zenodo.org/record/5089049"

_LICENSE = 'Creative Commons Zero v1.0 Universal'

_URLS = {
    "source": "https://zenodo.org/record/5089049/files/NLM-Gene-Corpus.zip",
    "bigbio_kb": "https://zenodo.org/record/5089049/files/NLM-Gene-Corpus.zip",
}

_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION]

_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"


class NLMGeneDataset(datasets.GeneratorBasedBuilder):
    """NLM-Gene Dataset for gene entities"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="nlm_gene_source",
            version=SOURCE_VERSION,
            description="NlM Gene source schema",
            schema="source",
            subset_id="nlm_gene",
        ),
        BigBioConfig(
            name="nlm_gene_bigbio_kb",
            version=BIGBIO_VERSION,
            description="NlM Gene BigBio schema",
            schema="bigbio_kb",
            subset_id="nlm_gene",
        ),
    ]

    DEFAULT_CONFIG_NAME = "nlm_gene_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":
            if self.config.schema == "source":
                # this is a variation on the BioC format
                features = datasets.Features(
                    {
                        "passages": [
                            {
                                "document_id": datasets.Value("string"),
                                "type": datasets.Value("string"),
                                "text": datasets.Value("string"),
                                "entities": [
                                    {
                                        "id": datasets.Value("string"),
                                        "offsets": [[datasets.Value("int32")]],
                                        "text": [datasets.Value("string")],
                                        "type": datasets.Value("string"),
                                        "normalized": [
                                            {
                                                "db_name": datasets.Value("string"),
                                                "db_id": datasets.Value("string"),
                                            }
                                        ],
                                    }
                                ],
                            }
                        ]
                    }
                )

        elif self.config.schema == "bigbio_kb":
            features = kb_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        urls = _URLS[self.config.schema]
        data_dir = Path(dl_manager.download_and_extract(urls))

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir / "Corpus",
                    "file_name": "Pmidlist.Train.txt",
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": data_dir / "Corpus",
                    "file_name": "Pmidlist.Test.txt",
                    "split": "test",
                },
            ),
        ]

    @staticmethod
    def _get_bioc_entity(
        span, db_id_key="NCBI Gene identifier", splitters=",;|-"
    ) -> dict:
        """Parse BioC entity annotation."""
        offsets, texts = get_texts_and_offsets_from_bioc_ann(span)
        db_ids = span.infons.get(db_id_key, "-1")

        # Correct an annotation error in PMID 24886643
        if db_ids.startswith('-222'):
            db_ids = db_ids.lstrip('-222,')

        # No listed entity for a mention
        if db_ids in ['-1','-000','-111','-']:
            normalized = []

        else:
            # Find connector between db_ids for the normalization, if not found, use default
            connector = "|"
            for splitter in list(splitters):
                if splitter in db_ids:
                    connector = splitter
            normalized = [
                {"db_name": "NCBIGene", "db_id": db_id} for db_id in db_ids.split(connector)
            ]

        return {
            "id": span.id,
            "offsets": offsets,
            "text": texts,
            "type": span.infons["type"],
            "normalized": normalized,
        }

    def _generate_examples(
        self, filepath: Path, file_name: str, split: str
    ) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        if self.config.schema == "source":
            with open(filepath / file_name, encoding="utf-8") as f:
                contents = f.readlines()
            for uid, content in enumerate(contents):
                file_id = content.replace("\n", "")
                file_path = filepath / "FINAL" / f"{file_id}.BioC.XML"
                reader = biocxml.BioCXMLDocumentReader(file_path.as_posix())
                for xdoc in reader:
                    yield uid, {
                        "passages": [
                            {
                                "document_id": xdoc.id,
                                "type": passage.infons["type"],
                                "text": passage.text,
                                "entities": [
                                    self._get_bioc_entity(span)
                                    for span in passage.annotations
                                ],
                            }
                            for passage in xdoc.passages
                        ]
                    }
        elif self.config.schema == "bigbio_kb":
            with open(filepath / file_name, encoding="utf-8") as f:
                contents = f.readlines()
            uid = 0  # global unique id
            for i, content in enumerate(contents):
                file_id = content.replace("\n", "")
                file_path = filepath / "FINAL" / f"{file_id}.BioC.XML"
                reader = biocxml.BioCXMLDocumentReader(file_path.as_posix())
                for xdoc in reader:
                    data = {
                        "id": uid,
                        "document_id": xdoc.id,
                        "passages": [],
                        "entities": [],
                        "relations": [],
                        "events": [],
                        "coreferences": [],
                    }
                    uid += 1

                    char_start = 0
                    # passages must not overlap and spans must cover the entire document
                    for passage in xdoc.passages:
                        offsets = [[char_start, char_start + len(passage.text)]]
                        char_start = char_start + len(passage.text) + 1
                        data["passages"].append(
                            {
                                "id": uid,
                                "type": passage.infons["type"],
                                "text": [passage.text],
                                "offsets": offsets,
                            }
                        )
                        uid += 1
                    # entities
                    for passage in xdoc.passages:
                        for span in passage.annotations:
                            ent = self._get_bioc_entity(
                                span, db_id_key="NCBI Gene identifier"
                            )
                            ent["id"] = uid  # override BioC default id
                            data["entities"].append(ent)
                            uid += 1

                    yield i, data