|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
A dataset loading script for the MEDDOCAN corpus. |
|
The MEDDOCAN datset is a manually annotated collection of clinical case |
|
reports derived from the Spanish Clinical Case Corpus (SPACCC). It was designed |
|
for the Medical Document Anonymization Track, the first the first community |
|
challenge task specifically devoted to the anonymization of medical documents in Spanish |
|
""" |
|
|
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
from .bigbiohub import parse_brat_file |
|
from .bigbiohub import brat_parse_to_bigbio_kb |
|
|
|
_LANGUAGES = ['Spanish'] |
|
_PUBMED = False |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{marimon2019automatic, |
|
title={Automatic De-identification of Medical Texts in Spanish: the MEDDOCAN Track, Corpus, Guidelines, Methods and Evaluation of Results.}, |
|
author={Marimon, Montserrat and Gonzalez-Agirre, Aitor and Intxaurrondo, Ander and Rodriguez, Heidy and Martin, Jose Lopez and Villegas, Marta and Krallinger, Martin}, |
|
booktitle={IberLEF@ SEPLN}, |
|
pages={618--638}, |
|
year={2019} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "meddocan" |
|
_DISPLAYNAME = "MEDDOCAN" |
|
|
|
_DESCRIPTION = """\ |
|
MEDDOCAN: Medical Document Anonymization Track |
|
|
|
This dataset is designed for the MEDDOCAN task, sponsored by Plan de Impulso de las Tecnologías del Lenguaje. |
|
|
|
It is a manually classified collection of 1,000 clinical case reports derived from the \ |
|
Spanish Clinical Case Corpus (SPACCC), enriched with PHI expressions. |
|
|
|
The annotation of the entire set of entity mentions was carried out by experts annotators\ |
|
and it includes 29 entity types relevant for the annonymiation of medical documents.\ |
|
22 of these annotation types are actually present in the corpus: TERRITORIO, FECHAS, \ |
|
EDAD_SUJETO_ASISTENCIA, NOMBRE_SUJETO_ASISTENCIA, NOMBRE_PERSONAL_SANITARIO, \ |
|
SEXO_SUJETO_ASISTENCIA, CALLE, PAIS, ID_SUJETO_ASISTENCIA, CORREO, ID_TITULACION_PERSONAL_SANITARIO,\ |
|
ID_ASEGURAMIENTO, HOSPITAL, FAMILIARES_SUJETO_ASISTENCIA, INSTITUCION, ID_CONTACTO ASISTENCIAL,\ |
|
NUMERO_TELEFONO, PROFESION, NUMERO_FAX, OTROS_SUJETO_ASISTENCIA, CENTRO_SALUD, ID_EMPLEO_PERSONAL_SANITARIO |
|
|
|
For further information, please visit https://temu.bsc.es/meddocan/ or send an email to [email protected] |
|
""" |
|
|
|
|
|
_HOMEPAGE = "https://temu.bsc.es/meddocan/" |
|
|
|
_LICENSE = 'Creative Commons Attribution 4.0 International' |
|
|
|
_URLS = { |
|
"meddocan": "https://zenodo.org/record/4279323/files/meddocan.zip?download=1", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class MeddocanDataset(datasets.GeneratorBasedBuilder): |
|
"""Manually annotated collection of clinical case studies from Spanish medical publications.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="meddocan_source", |
|
version=SOURCE_VERSION, |
|
description="Meddocan source schema", |
|
schema="source", |
|
subset_id="meddocan", |
|
), |
|
BigBioConfig( |
|
name="meddocan_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="Meddocan BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="meddocan", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "meddocan_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
|
|
"text_bound_annotations": [ |
|
{ |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"type": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
} |
|
], |
|
"events": [ |
|
{ |
|
"trigger": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"arguments": datasets.Sequence( |
|
{ |
|
"role": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
], |
|
"relations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"head": { |
|
"ref_id": datasets.Value("string"), |
|
"role": datasets.Value("string"), |
|
}, |
|
"tail": { |
|
"ref_id": datasets.Value("string"), |
|
"role": datasets.Value("string"), |
|
}, |
|
"type": datasets.Value("string"), |
|
} |
|
], |
|
"equivalences": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"ref_ids": datasets.Sequence(datasets.Value("string")), |
|
} |
|
], |
|
"attributes": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
"value": datasets.Value("string"), |
|
} |
|
], |
|
"normalizations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
"resource_name": datasets.Value("string"), |
|
"cuid": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
} |
|
], |
|
}, |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
""" |
|
Downloads/extracts the data to generate the train, validation and test splits. |
|
Each split is created by instantiating a `datasets.SplitGenerator`, which will |
|
call `this._generate_examples` with the keyword arguments in `gen_kwargs`. |
|
""" |
|
|
|
data_dir = dl_manager.download_and_extract(_URLS["meddocan"]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": Path(os.path.join(data_dir, "meddocan/train/brat")), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": Path(os.path.join(data_dir, "meddocan/test/brat")), |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": Path(os.path.join(data_dir, "meddocan/dev/brat")), |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]: |
|
""" |
|
This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. |
|
Method parameters are unpacked from `gen_kwargs` as given in `_split_generators`. |
|
""" |
|
|
|
txt_files = sorted(list(filepath.glob("*txt"))) |
|
|
|
|
|
if self.config.schema == "source": |
|
for guid, txt_file in enumerate(txt_files): |
|
example = parse_brat_file(txt_file) |
|
|
|
example["id"] = str(guid) |
|
yield guid, example |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
for guid, txt_file in enumerate(txt_files): |
|
example = brat_parse_to_bigbio_kb( |
|
parse_brat_file(txt_file) |
|
) |
|
example["id"] = str(guid) |
|
yield guid, example |
|
|
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|