Datasets:

Modalities:
Tabular
Text
Languages:
English
Libraries:
Datasets
License:
parquet-converter commited on
Commit
df251e0
1 Parent(s): 8604fe5

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,54 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.lz4 filter=lfs diff=lfs merge=lfs -text
12
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
13
- *.model filter=lfs diff=lfs merge=lfs -text
14
- *.msgpack filter=lfs diff=lfs merge=lfs -text
15
- *.npy filter=lfs diff=lfs merge=lfs -text
16
- *.npz filter=lfs diff=lfs merge=lfs -text
17
- *.onnx filter=lfs diff=lfs merge=lfs -text
18
- *.ot filter=lfs diff=lfs merge=lfs -text
19
- *.parquet filter=lfs diff=lfs merge=lfs -text
20
- *.pb filter=lfs diff=lfs merge=lfs -text
21
- *.pickle filter=lfs diff=lfs merge=lfs -text
22
- *.pkl filter=lfs diff=lfs merge=lfs -text
23
- *.pt filter=lfs diff=lfs merge=lfs -text
24
- *.pth filter=lfs diff=lfs merge=lfs -text
25
- *.rar filter=lfs diff=lfs merge=lfs -text
26
- *.safetensors filter=lfs diff=lfs merge=lfs -text
27
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
28
- *.tar.* filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
36
- # Audio files - uncompressed
37
- *.pcm filter=lfs diff=lfs merge=lfs -text
38
- *.sam filter=lfs diff=lfs merge=lfs -text
39
- *.raw filter=lfs diff=lfs merge=lfs -text
40
- # Audio files - compressed
41
- *.aac filter=lfs diff=lfs merge=lfs -text
42
- *.flac filter=lfs diff=lfs merge=lfs -text
43
- *.mp3 filter=lfs diff=lfs merge=lfs -text
44
- *.ogg filter=lfs diff=lfs merge=lfs -text
45
- *.wav filter=lfs diff=lfs merge=lfs -text
46
- # Image files - uncompressed
47
- *.bmp filter=lfs diff=lfs merge=lfs -text
48
- *.gif filter=lfs diff=lfs merge=lfs -text
49
- *.png filter=lfs diff=lfs merge=lfs -text
50
- *.tiff filter=lfs diff=lfs merge=lfs -text
51
- # Image files - compressed
52
- *.jpg filter=lfs diff=lfs merge=lfs -text
53
- *.jpeg filter=lfs diff=lfs merge=lfs -text
54
- *.webp filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bigbiohub.py DELETED
@@ -1,556 +0,0 @@
1
- from collections import defaultdict
2
- from dataclasses import dataclass
3
- from enum import Enum
4
- import logging
5
- from pathlib import Path
6
- from types import SimpleNamespace
7
- from typing import TYPE_CHECKING, Dict, Iterable, List, Tuple
8
-
9
- import datasets
10
-
11
- if TYPE_CHECKING:
12
- import bioc
13
-
14
- logger = logging.getLogger(__name__)
15
-
16
-
17
- BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>")
18
-
19
-
20
- @dataclass
21
- class BigBioConfig(datasets.BuilderConfig):
22
- """BuilderConfig for BigBio."""
23
-
24
- name: str = None
25
- version: datasets.Version = None
26
- description: str = None
27
- schema: str = None
28
- subset_id: str = None
29
-
30
-
31
- class Tasks(Enum):
32
- NAMED_ENTITY_RECOGNITION = "NER"
33
- NAMED_ENTITY_DISAMBIGUATION = "NED"
34
- EVENT_EXTRACTION = "EE"
35
- RELATION_EXTRACTION = "RE"
36
- COREFERENCE_RESOLUTION = "COREF"
37
- QUESTION_ANSWERING = "QA"
38
- TEXTUAL_ENTAILMENT = "TE"
39
- SEMANTIC_SIMILARITY = "STS"
40
- TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS"
41
- PARAPHRASING = "PARA"
42
- TRANSLATION = "TRANSL"
43
- SUMMARIZATION = "SUM"
44
- TEXT_CLASSIFICATION = "TXTCLASS"
45
-
46
-
47
- entailment_features = datasets.Features(
48
- {
49
- "id": datasets.Value("string"),
50
- "premise": datasets.Value("string"),
51
- "hypothesis": datasets.Value("string"),
52
- "label": datasets.Value("string"),
53
- }
54
- )
55
-
56
- pairs_features = datasets.Features(
57
- {
58
- "id": datasets.Value("string"),
59
- "document_id": datasets.Value("string"),
60
- "text_1": datasets.Value("string"),
61
- "text_2": datasets.Value("string"),
62
- "label": datasets.Value("string"),
63
- }
64
- )
65
-
66
- qa_features = datasets.Features(
67
- {
68
- "id": datasets.Value("string"),
69
- "question_id": datasets.Value("string"),
70
- "document_id": datasets.Value("string"),
71
- "question": datasets.Value("string"),
72
- "type": datasets.Value("string"),
73
- "choices": [datasets.Value("string")],
74
- "context": datasets.Value("string"),
75
- "answer": datasets.Sequence(datasets.Value("string")),
76
- }
77
- )
78
-
79
- text_features = datasets.Features(
80
- {
81
- "id": datasets.Value("string"),
82
- "document_id": datasets.Value("string"),
83
- "text": datasets.Value("string"),
84
- "labels": [datasets.Value("string")],
85
- }
86
- )
87
-
88
- text2text_features = datasets.Features(
89
- {
90
- "id": datasets.Value("string"),
91
- "document_id": datasets.Value("string"),
92
- "text_1": datasets.Value("string"),
93
- "text_2": datasets.Value("string"),
94
- "text_1_name": datasets.Value("string"),
95
- "text_2_name": datasets.Value("string"),
96
- }
97
- )
98
-
99
- kb_features = datasets.Features(
100
- {
101
- "id": datasets.Value("string"),
102
- "document_id": datasets.Value("string"),
103
- "passages": [
104
- {
105
- "id": datasets.Value("string"),
106
- "type": datasets.Value("string"),
107
- "text": datasets.Sequence(datasets.Value("string")),
108
- "offsets": datasets.Sequence([datasets.Value("int32")]),
109
- }
110
- ],
111
- "entities": [
112
- {
113
- "id": datasets.Value("string"),
114
- "type": datasets.Value("string"),
115
- "text": datasets.Sequence(datasets.Value("string")),
116
- "offsets": datasets.Sequence([datasets.Value("int32")]),
117
- "normalized": [
118
- {
119
- "db_name": datasets.Value("string"),
120
- "db_id": datasets.Value("string"),
121
- }
122
- ],
123
- }
124
- ],
125
- "events": [
126
- {
127
- "id": datasets.Value("string"),
128
- "type": datasets.Value("string"),
129
- # refers to the text_bound_annotation of the trigger
130
- "trigger": {
131
- "text": datasets.Sequence(datasets.Value("string")),
132
- "offsets": datasets.Sequence([datasets.Value("int32")]),
133
- },
134
- "arguments": [
135
- {
136
- "role": datasets.Value("string"),
137
- "ref_id": datasets.Value("string"),
138
- }
139
- ],
140
- }
141
- ],
142
- "coreferences": [
143
- {
144
- "id": datasets.Value("string"),
145
- "entity_ids": datasets.Sequence(datasets.Value("string")),
146
- }
147
- ],
148
- "relations": [
149
- {
150
- "id": datasets.Value("string"),
151
- "type": datasets.Value("string"),
152
- "arg1_id": datasets.Value("string"),
153
- "arg2_id": datasets.Value("string"),
154
- "normalized": [
155
- {
156
- "db_name": datasets.Value("string"),
157
- "db_id": datasets.Value("string"),
158
- }
159
- ],
160
- }
161
- ],
162
- }
163
- )
164
-
165
-
166
- def get_texts_and_offsets_from_bioc_ann(ann: "bioc.BioCAnnotation") -> Tuple:
167
-
168
- offsets = [(loc.offset, loc.offset + loc.length) for loc in ann.locations]
169
-
170
- text = ann.text
171
-
172
- if len(offsets) > 1:
173
- i = 0
174
- texts = []
175
- for start, end in offsets:
176
- chunk_len = end - start
177
- texts.append(text[i : chunk_len + i])
178
- i += chunk_len
179
- while i < len(text) and text[i] == " ":
180
- i += 1
181
- else:
182
- texts = [text]
183
-
184
- return offsets, texts
185
-
186
-
187
- def remove_prefix(a: str, prefix: str) -> str:
188
- if a.startswith(prefix):
189
- a = a[len(prefix) :]
190
- return a
191
-
192
-
193
- def parse_brat_file(
194
- txt_file: Path,
195
- annotation_file_suffixes: List[str] = None,
196
- parse_notes: bool = False,
197
- ) -> Dict:
198
- """
199
- Parse a brat file into the schema defined below.
200
- `txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt'
201
- Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files,
202
- e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'.
203
- Will include annotator notes, when `parse_notes == True`.
204
- brat_features = datasets.Features(
205
- {
206
- "id": datasets.Value("string"),
207
- "document_id": datasets.Value("string"),
208
- "text": datasets.Value("string"),
209
- "text_bound_annotations": [ # T line in brat, e.g. type or event trigger
210
- {
211
- "offsets": datasets.Sequence([datasets.Value("int32")]),
212
- "text": datasets.Sequence(datasets.Value("string")),
213
- "type": datasets.Value("string"),
214
- "id": datasets.Value("string"),
215
- }
216
- ],
217
- "events": [ # E line in brat
218
- {
219
- "trigger": datasets.Value(
220
- "string"
221
- ), # refers to the text_bound_annotation of the trigger,
222
- "id": datasets.Value("string"),
223
- "type": datasets.Value("string"),
224
- "arguments": datasets.Sequence(
225
- {
226
- "role": datasets.Value("string"),
227
- "ref_id": datasets.Value("string"),
228
- }
229
- ),
230
- }
231
- ],
232
- "relations": [ # R line in brat
233
- {
234
- "id": datasets.Value("string"),
235
- "head": {
236
- "ref_id": datasets.Value("string"),
237
- "role": datasets.Value("string"),
238
- },
239
- "tail": {
240
- "ref_id": datasets.Value("string"),
241
- "role": datasets.Value("string"),
242
- },
243
- "type": datasets.Value("string"),
244
- }
245
- ],
246
- "equivalences": [ # Equiv line in brat
247
- {
248
- "id": datasets.Value("string"),
249
- "ref_ids": datasets.Sequence(datasets.Value("string")),
250
- }
251
- ],
252
- "attributes": [ # M or A lines in brat
253
- {
254
- "id": datasets.Value("string"),
255
- "type": datasets.Value("string"),
256
- "ref_id": datasets.Value("string"),
257
- "value": datasets.Value("string"),
258
- }
259
- ],
260
- "normalizations": [ # N lines in brat
261
- {
262
- "id": datasets.Value("string"),
263
- "type": datasets.Value("string"),
264
- "ref_id": datasets.Value("string"),
265
- "resource_name": datasets.Value(
266
- "string"
267
- ), # Name of the resource, e.g. "Wikipedia"
268
- "cuid": datasets.Value(
269
- "string"
270
- ), # ID in the resource, e.g. 534366
271
- "text": datasets.Value(
272
- "string"
273
- ), # Human readable description/name of the entity, e.g. "Barack Obama"
274
- }
275
- ],
276
- ### OPTIONAL: Only included when `parse_notes == True`
277
- "notes": [ # # lines in brat
278
- {
279
- "id": datasets.Value("string"),
280
- "type": datasets.Value("string"),
281
- "ref_id": datasets.Value("string"),
282
- "text": datasets.Value("string"),
283
- }
284
- ],
285
- },
286
- )
287
- """
288
-
289
- example = {}
290
- example["document_id"] = txt_file.with_suffix("").name
291
- with txt_file.open() as f:
292
- example["text"] = f.read()
293
-
294
- # If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
295
- # for event extraction
296
- if annotation_file_suffixes is None:
297
- annotation_file_suffixes = [".a1", ".a2", ".ann"]
298
-
299
- if len(annotation_file_suffixes) == 0:
300
- raise AssertionError(
301
- "At least one suffix for the to-be-read annotation files should be given!"
302
- )
303
-
304
- ann_lines = []
305
- for suffix in annotation_file_suffixes:
306
- annotation_file = txt_file.with_suffix(suffix)
307
- if annotation_file.exists():
308
- with annotation_file.open() as f:
309
- ann_lines.extend(f.readlines())
310
-
311
- example["text_bound_annotations"] = []
312
- example["events"] = []
313
- example["relations"] = []
314
- example["equivalences"] = []
315
- example["attributes"] = []
316
- example["normalizations"] = []
317
-
318
- if parse_notes:
319
- example["notes"] = []
320
-
321
- for line in ann_lines:
322
- line = line.strip()
323
- if not line:
324
- continue
325
-
326
- if line.startswith("T"): # Text bound
327
- ann = {}
328
- fields = line.split("\t")
329
-
330
- ann["id"] = fields[0]
331
- ann["type"] = fields[1].split()[0]
332
- ann["offsets"] = []
333
- span_str = remove_prefix(fields[1], (ann["type"] + " "))
334
- text = fields[2]
335
- for span in span_str.split(";"):
336
- start, end = span.split()
337
- ann["offsets"].append([int(start), int(end)])
338
-
339
- # Heuristically split text of discontiguous entities into chunks
340
- ann["text"] = []
341
- if len(ann["offsets"]) > 1:
342
- i = 0
343
- for start, end in ann["offsets"]:
344
- chunk_len = end - start
345
- ann["text"].append(text[i : chunk_len + i])
346
- i += chunk_len
347
- while i < len(text) and text[i] == " ":
348
- i += 1
349
- else:
350
- ann["text"] = [text]
351
-
352
- example["text_bound_annotations"].append(ann)
353
-
354
- elif line.startswith("E"):
355
- ann = {}
356
- fields = line.split("\t")
357
-
358
- ann["id"] = fields[0]
359
-
360
- ann["type"], ann["trigger"] = fields[1].split()[0].split(":")
361
-
362
- ann["arguments"] = []
363
- for role_ref_id in fields[1].split()[1:]:
364
- argument = {
365
- "role": (role_ref_id.split(":"))[0],
366
- "ref_id": (role_ref_id.split(":"))[1],
367
- }
368
- ann["arguments"].append(argument)
369
-
370
- example["events"].append(ann)
371
-
372
- elif line.startswith("R"):
373
- ann = {}
374
- fields = line.split("\t")
375
-
376
- ann["id"] = fields[0]
377
- ann["type"] = fields[1].split()[0]
378
-
379
- ann["head"] = {
380
- "role": fields[1].split()[1].split(":")[0],
381
- "ref_id": fields[1].split()[1].split(":")[1],
382
- }
383
- ann["tail"] = {
384
- "role": fields[1].split()[2].split(":")[0],
385
- "ref_id": fields[1].split()[2].split(":")[1],
386
- }
387
-
388
- example["relations"].append(ann)
389
-
390
- # '*' seems to be the legacy way to mark equivalences,
391
- # but I couldn't find any info on the current way
392
- # this might have to be adapted dependent on the brat version
393
- # of the annotation
394
- elif line.startswith("*"):
395
- ann = {}
396
- fields = line.split("\t")
397
-
398
- ann["id"] = fields[0]
399
- ann["ref_ids"] = fields[1].split()[1:]
400
-
401
- example["equivalences"].append(ann)
402
-
403
- elif line.startswith("A") or line.startswith("M"):
404
- ann = {}
405
- fields = line.split("\t")
406
-
407
- ann["id"] = fields[0]
408
-
409
- info = fields[1].split()
410
- ann["type"] = info[0]
411
- ann["ref_id"] = info[1]
412
-
413
- if len(info) > 2:
414
- ann["value"] = info[2]
415
- else:
416
- ann["value"] = ""
417
-
418
- example["attributes"].append(ann)
419
-
420
- elif line.startswith("N"):
421
- ann = {}
422
- fields = line.split("\t")
423
-
424
- ann["id"] = fields[0]
425
- ann["text"] = fields[2]
426
-
427
- info = fields[1].split()
428
-
429
- ann["type"] = info[0]
430
- ann["ref_id"] = info[1]
431
- ann["resource_name"] = info[2].split(":")[0]
432
- ann["cuid"] = info[2].split(":")[1]
433
- example["normalizations"].append(ann)
434
-
435
- elif parse_notes and line.startswith("#"):
436
- ann = {}
437
- fields = line.split("\t")
438
-
439
- ann["id"] = fields[0]
440
- ann["text"] = fields[2] if len(fields) == 3 else BigBioValues.NULL
441
-
442
- info = fields[1].split()
443
-
444
- ann["type"] = info[0]
445
- ann["ref_id"] = info[1]
446
- example["notes"].append(ann)
447
-
448
- return example
449
-
450
-
451
- def brat_parse_to_bigbio_kb(brat_parse: Dict) -> Dict:
452
- """
453
- Transform a brat parse (conforming to the standard brat schema) obtained with
454
- `parse_brat_file` into a dictionary conforming to the `bigbio-kb` schema (as defined in ../schemas/kb.py)
455
- :param brat_parse:
456
- """
457
-
458
- unified_example = {}
459
-
460
- # Prefix all ids with document id to ensure global uniqueness,
461
- # because brat ids are only unique within their document
462
- id_prefix = brat_parse["document_id"] + "_"
463
-
464
- # identical
465
- unified_example["document_id"] = brat_parse["document_id"]
466
- unified_example["passages"] = [
467
- {
468
- "id": id_prefix + "_text",
469
- "type": "abstract",
470
- "text": [brat_parse["text"]],
471
- "offsets": [[0, len(brat_parse["text"])]],
472
- }
473
- ]
474
-
475
- # get normalizations
476
- ref_id_to_normalizations = defaultdict(list)
477
- for normalization in brat_parse["normalizations"]:
478
- ref_id_to_normalizations[normalization["ref_id"]].append(
479
- {
480
- "db_name": normalization["resource_name"],
481
- "db_id": normalization["cuid"],
482
- }
483
- )
484
-
485
- # separate entities and event triggers
486
- unified_example["events"] = []
487
- non_event_ann = brat_parse["text_bound_annotations"].copy()
488
- for event in brat_parse["events"]:
489
- event = event.copy()
490
- event["id"] = id_prefix + event["id"]
491
- trigger = next(
492
- tr
493
- for tr in brat_parse["text_bound_annotations"]
494
- if tr["id"] == event["trigger"]
495
- )
496
- if trigger in non_event_ann:
497
- non_event_ann.remove(trigger)
498
- event["trigger"] = {
499
- "text": trigger["text"].copy(),
500
- "offsets": trigger["offsets"].copy(),
501
- }
502
- for argument in event["arguments"]:
503
- argument["ref_id"] = id_prefix + argument["ref_id"]
504
-
505
- unified_example["events"].append(event)
506
-
507
- unified_example["entities"] = []
508
- anno_ids = [ref_id["id"] for ref_id in non_event_ann]
509
- for ann in non_event_ann:
510
- entity_ann = ann.copy()
511
- entity_ann["id"] = id_prefix + entity_ann["id"]
512
- entity_ann["normalized"] = ref_id_to_normalizations[ann["id"]]
513
- unified_example["entities"].append(entity_ann)
514
-
515
- # massage relations
516
- unified_example["relations"] = []
517
- skipped_relations = set()
518
- for ann in brat_parse["relations"]:
519
- if (
520
- ann["head"]["ref_id"] not in anno_ids
521
- or ann["tail"]["ref_id"] not in anno_ids
522
- ):
523
- skipped_relations.add(ann["id"])
524
- continue
525
- unified_example["relations"].append(
526
- {
527
- "arg1_id": id_prefix + ann["head"]["ref_id"],
528
- "arg2_id": id_prefix + ann["tail"]["ref_id"],
529
- "id": id_prefix + ann["id"],
530
- "type": ann["type"],
531
- "normalized": [],
532
- }
533
- )
534
- if len(skipped_relations) > 0:
535
- example_id = brat_parse["document_id"]
536
- logger.info(
537
- f"Example:{example_id}: The `bigbio_kb` schema allows `relations` only between entities."
538
- f" Skip (for now): "
539
- f"{list(skipped_relations)}"
540
- )
541
-
542
- # get coreferences
543
- unified_example["coreferences"] = []
544
- for i, ann in enumerate(brat_parse["equivalences"], start=1):
545
- is_entity_cluster = True
546
- for ref_id in ann["ref_ids"]:
547
- if not ref_id.startswith("T"): # not textbound -> no entity
548
- is_entity_cluster = False
549
- elif ref_id not in anno_ids: # event trigger -> no entity
550
- is_entity_cluster = False
551
- if is_entity_cluster:
552
- entity_ids = [id_prefix + i for i in ann["ref_ids"]]
553
- unified_example["coreferences"].append(
554
- {"id": id_prefix + str(i), "entity_ids": entity_ids}
555
- )
556
- return unified_example
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
evidence-inference_bigbio_qa/evidence_inference-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9df43b7ee8cbdd96c49540451d9da1c2f871c8fbbea8dfe696d688756957af5a
3
+ size 126365
evidence-inference_bigbio_qa/evidence_inference-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ab20ae6034a80ba99a55ca53b24de2a1d84b129dfd4747759027eccc285c3b3
3
+ size 1080427
evidence-inference_bigbio_qa/evidence_inference-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:363f4f73a55adad341a57457a443771d2ba94c94e1188c8cd3dc013210c36429
3
+ size 125745
evidence-inference_source/evidence_inference-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6786c54b744d0a23c0bb7a2a5b3ee997efbb000ae0e083a857f824b744676065
3
+ size 120529
evidence-inference_source/evidence_inference-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44116ac11da28f25bc7ecf87eeb6454edb83b24b459e2b0752d8543b340fc824
3
+ size 1016919
evidence-inference_source/evidence_inference-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75e6c5ccc85baecbab8a3fcdd7de89c5767584cd44db43283a86f95ae9e64a7b
3
+ size 120318
evidence_inference.py DELETED
@@ -1,293 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- """
17
- The dataset consists of biomedical articles describing randomized control trials (RCTs)
18
- that compare multiple treatments. Each of these articles will have multiple questions,
19
- or 'prompts' associated with them. These prompts will ask about the relationship between
20
- an intervention and comparator with respect to an outcome, as reported in the trial.
21
- For example, a prompt may ask about the reported effects of aspirin as compared to placebo
22
- on the duration of headaches.
23
- For the sake of this task, we assume that a particular article will report that the intervention of interest either
24
- significantly increased, significantly decreased or had significant effect on the outcome, relative to the comparator.
25
- """
26
-
27
- import os
28
- from typing import Dict, List, Tuple
29
-
30
- import datasets
31
- import pandas as pd
32
-
33
- from .bigbiohub import qa_features
34
- from .bigbiohub import BigBioConfig
35
- from .bigbiohub import Tasks
36
-
37
- _LANGUAGES = ['English']
38
- _PUBMED = True
39
- _LOCAL = False
40
- _CITATION = """\
41
- @inproceedings{deyoung-etal-2020-evidence,
42
- title = "Evidence Inference 2.0: More Data, Better Models",
43
- author = "DeYoung, Jay and
44
- Lehman, Eric and
45
- Nye, Benjamin and
46
- Marshall, Iain and
47
- Wallace, Byron C.",
48
- booktitle = "Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing",
49
- month = jul,
50
- year = "2020",
51
- address = "Online",
52
- publisher = "Association for Computational Linguistics",
53
- url = "https://www.aclweb.org/anthology/2020.bionlp-1.13",
54
- pages = "123--132",
55
- }
56
- """
57
-
58
- _DATASETNAME = "evidence_inference"
59
- _DISPLAYNAME = "Evidence Inference 2.0"
60
-
61
- _DESCRIPTION = """\
62
- The dataset consists of biomedical articles describing randomized control trials (RCTs) that compare multiple
63
- treatments. Each of these articles will have multiple questions, or 'prompts' associated with them.
64
- These prompts will ask about the relationship between an intervention and comparator with respect to an outcome,
65
- as reported in the trial. For example, a prompt may ask about the reported effects of aspirin as compared
66
- to placebo on the duration of headaches. For the sake of this task, we assume that a particular article
67
- will report that the intervention of interest either significantly increased, significantly decreased
68
- or had significant effect on the outcome, relative to the comparator.
69
- """
70
-
71
- _HOMEPAGE = "https://github.com/jayded/evidence-inference"
72
-
73
- _LICENSE = 'MIT License'
74
-
75
- _URLS = {
76
- _DATASETNAME: "http://evidence-inference.ebm-nlp.com/v2.0.tar.gz",
77
- }
78
-
79
- _SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]
80
-
81
- _SOURCE_VERSION = "2.0.0"
82
-
83
- _BIGBIO_VERSION = "1.0.0"
84
-
85
- QA_CHOICES = [
86
- "significantly increased",
87
- "no significant difference",
88
- "significantly decreased",
89
- ]
90
-
91
- # Some examples are removed due to comments on the dataset's github page
92
- # https://github.com/jayded/evidence-inference/blob/master/annotations/README.md#caveat
93
-
94
- INCORRECT_PROMPT_IDS = set([
95
- 911, 912, 1262, 1261, 3044, 3248, 3111, 3620, 4308, 4490, 4491, 4324,
96
- 4325, 4492, 4824, 5000, 5001, 5002, 5046, 5047, 4948, 5639, 5710, 5752,
97
- 5775, 5782, 5841, 5843, 5861, 5862, 5863, 5964, 5965, 5966, 5975, 4807,
98
- 5776, 5777, 5778, 5779, 5780, 5781, 6034, 6065, 6066, 6666, 6667, 6668,
99
- 6669, 7040, 7042, 7944, 8590, 8605, 8606, 8639, 8640, 8745, 8747, 8749,
100
- 8877, 8878, 8593, 8631, 8635, 8884, 8886, 8773, 10032, 10035, 8876, 8875,
101
- 8885, 8917, 8921, 8118, 10885, 10886, 10887, 10888, 10889, 10890
102
- ])
103
-
104
- QUESTIONABLE_PROMPT_IDS = set([
105
- 7811, 7812, 7813, 7814, 7815, 8197, 8198, 8199,
106
- 8200, 8201, 9429, 9430, 9431, 8536, 9432
107
- ])
108
-
109
- SOMEWHAT_MALFORMED_PROMPT_IDS = set([
110
- 3514, 346, 5037, 4715, 8767, 9295, 9297, 8870, 9862
111
- ])
112
-
113
- SKIP_PROMPT_IDS = INCORRECT_PROMPT_IDS | QUESTIONABLE_PROMPT_IDS | SOMEWHAT_MALFORMED_PROMPT_IDS
114
-
115
-
116
- class EvidenceInferenceDataset(datasets.GeneratorBasedBuilder):
117
- f"""{_DESCRIPTION}"""
118
-
119
- SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
120
- BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
121
-
122
- BUILDER_CONFIGS = [
123
- BigBioConfig(
124
- name="evidence-inference_source",
125
- version=SOURCE_VERSION,
126
- description="evidence-inference source schema",
127
- schema="source",
128
- subset_id="evidence-inference",
129
- ),
130
- BigBioConfig(
131
- name="evidence-inference_bigbio_qa",
132
- version=BIGBIO_VERSION,
133
- description="evidence-inference BigBio schema",
134
- schema="bigbio_qa",
135
- subset_id="evidence-inference",
136
- ),
137
- ]
138
-
139
- DEFAULT_CONFIG_NAME = "evidence-inference_source"
140
-
141
- def _info(self) -> datasets.DatasetInfo:
142
- if self.config.schema == "source":
143
- features = datasets.Features(
144
- {
145
- "id": datasets.Value("int64"),
146
- "prompt_id": datasets.Value("int64"),
147
- "pmcid": datasets.Value("int64"),
148
- "label": datasets.Value("string"),
149
- "evidence": datasets.Value("string"),
150
- "intervention": datasets.Value("string"),
151
- "comparator": datasets.Value("string"),
152
- "outcome": datasets.Value("string"),
153
- }
154
- )
155
-
156
- elif self.config.schema == "bigbio_qa":
157
- features = qa_features
158
-
159
- return datasets.DatasetInfo(
160
- description=_DESCRIPTION,
161
- features=features,
162
- homepage=_HOMEPAGE,
163
- license=str(_LICENSE),
164
- citation=_CITATION,
165
- )
166
-
167
- def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
168
- """Returns SplitGenerators."""
169
-
170
- urls = _URLS[_DATASETNAME]
171
- data_dir = dl_manager.download_and_extract(urls)
172
-
173
- return [
174
- datasets.SplitGenerator(
175
- name=datasets.Split.TRAIN,
176
- gen_kwargs={
177
- "filepaths": [
178
- os.path.join(data_dir, "annotations_merged.csv"),
179
- os.path.join(data_dir, "prompts_merged.csv"),
180
- ],
181
- "datapath": os.path.join(data_dir, "txt_files"),
182
- "split": "train",
183
- "datadir": data_dir,
184
- },
185
- ),
186
- datasets.SplitGenerator(
187
- name=datasets.Split.VALIDATION,
188
- gen_kwargs={
189
- "filepaths": [
190
- os.path.join(data_dir, "annotations_merged.csv"),
191
- os.path.join(data_dir, "prompts_merged.csv"),
192
- ],
193
- "datapath": os.path.join(data_dir, "txt_files"),
194
- "split": "validation",
195
- "datadir": data_dir,
196
- },
197
- ),
198
- datasets.SplitGenerator(
199
- name=datasets.Split.TEST,
200
- gen_kwargs={
201
- "filepaths": [
202
- os.path.join(data_dir, "annotations_merged.csv"),
203
- os.path.join(data_dir, "prompts_merged.csv"),
204
- ],
205
- "datapath": os.path.join(data_dir, "txt_files"),
206
- "split": "test",
207
- "datadir": data_dir,
208
- },
209
- ),
210
- ]
211
-
212
- def _generate_examples(
213
- self, filepaths, datapath, split, datadir
214
- ) -> Tuple[int, Dict]:
215
- """Yields examples as (key, example) tuples."""
216
- with open(f"{datadir}/splits/{split}_article_ids.txt", "r") as f:
217
- ids = [int(i.strip()) for i in f.readlines()]
218
- prompts = pd.read_csv(filepaths[-1], encoding="utf8")
219
- prompts = prompts[prompts["PMCID"].isin(ids)]
220
-
221
- annotations = pd.read_csv(filepaths[0], encoding="utf8").set_index("PromptID")
222
- evidences = pd.read_csv(filepaths[0], encoding="utf8").set_index("PMCID")
223
- evidences = evidences[evidences["Evidence Start"] != -1]
224
- uid = 0
225
-
226
- def lookup(df: pd.DataFrame, id, col) -> str:
227
- try:
228
- label = df.loc[id][col]
229
- if isinstance(label, pd.Series):
230
- return label.values[0]
231
- else:
232
- return label
233
- except KeyError:
234
- return -1
235
-
236
- def extract_evidence(doc_id, start, end):
237
- p = f"{datapath}/PMC{doc_id}.txt"
238
- with open(p, "r") as f:
239
- return f.read()[start:end]
240
-
241
-
242
- for key, sample in prompts.iterrows():
243
-
244
- pid = sample["PromptID"]
245
- pmcid = sample["PMCID"]
246
- label = lookup(annotations, pid, "Label")
247
- start = lookup(evidences, pmcid, "Evidence Start")
248
- end = lookup(evidences, pmcid, "Evidence End")
249
-
250
- if pid in SKIP_PROMPT_IDS:
251
- continue
252
-
253
- if label == -1:
254
- continue
255
-
256
- evidence = extract_evidence(pmcid, start, end)
257
-
258
- if self.config.schema == "source":
259
-
260
- feature_dict = {
261
- "id": uid,
262
- "pmcid": pmcid,
263
- "prompt_id": pid,
264
- "intervention": sample["Intervention"],
265
- "comparator": sample["Comparator"],
266
- "outcome": sample["Outcome"],
267
- "evidence": evidence,
268
- "label": label,
269
- }
270
-
271
- uid += 1
272
- yield key, feature_dict
273
-
274
- elif self.config.schema == "bigbio_qa":
275
-
276
- context = evidence
277
- question = (
278
- f"Compared to {sample['Comparator']} "
279
- f"what was the result of {sample['Intervention']} on {sample['Outcome']}?"
280
- )
281
- feature_dict = {
282
- "id": uid,
283
- "question_id": pid,
284
- "document_id": pmcid,
285
- "question": question,
286
- "type": "multiple_choice",
287
- "choices": QA_CHOICES,
288
- "context": context,
289
- "answer": [label],
290
- }
291
-
292
- uid += 1
293
- yield key, feature_dict