|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
AnEM corpus is a domain- and species-independent resource manually annotated for anatomical |
|
entity mentions using a fine-grained classification system. The corpus consists of 500 documents |
|
(over 90,000 words) selected randomly from citation abstracts and full-text papers with |
|
the aim of making the corpus representative of the entire available biomedical scientific |
|
literature. The corpus annotation covers mentions of both healthy and pathological anatomical |
|
entities and contains over 3,000 annotated mentions. |
|
""" |
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
from .bigbiohub import parse_brat_file |
|
from .bigbiohub import brat_parse_to_bigbio_kb |
|
|
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{ohta-etal-2012-open, |
|
author = {Ohta, Tomoko and Pyysalo, Sampo and Tsujii, Jun{'}ichi and Ananiadou, Sophia}, |
|
title = {Open-domain Anatomical Entity Mention Detection}, |
|
journal = {}, |
|
volume = {W12-43}, |
|
year = {2012}, |
|
url = {https://aclanthology.org/W12-4304}, |
|
doi = {}, |
|
biburl = {}, |
|
bibsource = {}, |
|
publisher = {Association for Computational Linguistics} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "an_em" |
|
_DISPLAYNAME = "AnEM" |
|
|
|
_DESCRIPTION = """\ |
|
AnEM corpus is a domain- and species-independent resource manually annotated for anatomical |
|
entity mentions using a fine-grained classification system. The corpus consists of 500 documents |
|
(over 90,000 words) selected randomly from citation abstracts and full-text papers with |
|
the aim of making the corpus representative of the entire available biomedical scientific |
|
literature. The corpus annotation covers mentions of both healthy and pathological anatomical |
|
entities and contains over 3,000 annotated mentions. |
|
""" |
|
|
|
|
|
_HOMEPAGE = "http://www.nactem.ac.uk/anatomy/" |
|
|
|
_LICENSE = 'Creative Commons Attribution Share Alike 3.0 Unported' |
|
|
|
_URLS = { |
|
_DATASETNAME: "http://www.nactem.ac.uk/anatomy/data/AnEM-1.0.4.tar.gz", |
|
} |
|
|
|
_SUPPORTED_TASKS = [ |
|
Tasks.NAMED_ENTITY_RECOGNITION, |
|
Tasks.COREFERENCE_RESOLUTION, |
|
Tasks.RELATION_EXTRACTION, |
|
] |
|
|
|
_SOURCE_VERSION = "1.0.4" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class AnEMDataset(datasets.GeneratorBasedBuilder): |
|
"""Anatomical Entity Mention (AnEM) corpus""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="an_em_source", |
|
version=SOURCE_VERSION, |
|
description="AnEM source schema", |
|
schema="source", |
|
subset_id="an_em", |
|
), |
|
BigBioConfig( |
|
name="an_em_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="AnEM BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="an_em", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "an_em_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"document_type": datasets.Value("string"), |
|
"text_type": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
"text": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"entity_id": datasets.Value("string"), |
|
} |
|
], |
|
"equivalences": [ |
|
{ |
|
"entity_id": datasets.Value("string"), |
|
"ref_ids": datasets.Sequence(datasets.Value("string")), |
|
} |
|
], |
|
"relations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"head": { |
|
"ref_id": datasets.Value("string"), |
|
"role": datasets.Value("string"), |
|
}, |
|
"tail": { |
|
"ref_id": datasets.Value("string"), |
|
"role": datasets.Value("string"), |
|
}, |
|
"type": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = Path(dl_manager.download_and_extract(urls)) |
|
all_data = data_dir / "AnEM-1.0.4" / "standoff" |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": all_data, |
|
"split_path": data_dir |
|
/ "AnEM-1.0.4" |
|
/ "development" |
|
/ "train-files.list", |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": all_data, |
|
"split_path": data_dir / "AnEM-1.0.4" / "test" / "test-files.list", |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": all_data, |
|
"split_path": data_dir |
|
/ "AnEM-1.0.4" |
|
/ "development" |
|
/ "test-files.list", |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split_path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
with open(split_path, "r") as sp: |
|
split_list = [line.rstrip() for line in sp] |
|
|
|
if self.config.schema == "source": |
|
for file in filepath.iterdir(): |
|
|
|
|
|
if (file.suffix != ".txt") or (file.stem not in split_list): |
|
continue |
|
brat_parsed = parse_brat_file(file) |
|
source_example = self._brat_to_source(file, brat_parsed) |
|
|
|
yield source_example["document_id"], source_example |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
for file in filepath.iterdir(): |
|
|
|
|
|
if (file.suffix != ".txt") or (file.stem not in split_list): |
|
continue |
|
brat_parsed = parse_brat_file(file) |
|
bigbio_kb_example = brat_parse_to_bigbio_kb(brat_parsed) |
|
|
|
bigbio_kb_example["id"] = bigbio_kb_example["document_id"] |
|
|
|
doc_type, text_type = self.get_document_type_and_text_type(file) |
|
bigbio_kb_example["passages"][0]["type"] = text_type |
|
|
|
yield bigbio_kb_example["id"], bigbio_kb_example |
|
|
|
def _brat_to_source(self, filepath, brat_example): |
|
""" |
|
Converts parsed brat example to source schema example |
|
""" |
|
document_type, text_type = self.get_document_type_and_text_type(filepath) |
|
|
|
source_example = { |
|
"document_id": brat_example["document_id"], |
|
"text": brat_example["text"], |
|
"document_type": document_type, |
|
"text_type": text_type, |
|
"entities": [ |
|
{ |
|
"offsets": brat_entity["offsets"], |
|
"text": brat_entity["text"], |
|
"type": brat_entity["type"], |
|
"entity_id": f"{brat_example['document_id']}_{brat_entity['id']}", |
|
} |
|
for brat_entity in brat_example["text_bound_annotations"] |
|
], |
|
"equivalences": [ |
|
{ |
|
"entity_id": brat_entity["id"], |
|
"ref_ids": [ |
|
f"{brat_example['document_id']}_{ids}" |
|
for ids in brat_entity["ref_ids"] |
|
], |
|
} |
|
for brat_entity in brat_example["equivalences"] |
|
], |
|
"relations": [ |
|
{ |
|
"id": f"{brat_example['document_id']}_{brat_entity['id']}", |
|
"head": { |
|
"ref_id": f"{brat_example['document_id']}_{brat_entity['head']['ref_id']}", |
|
"role": brat_entity["head"]["role"], |
|
}, |
|
"tail": { |
|
"ref_id": f"{brat_example['document_id']}_{brat_entity['tail']['ref_id']}", |
|
"role": brat_entity["tail"]["role"], |
|
}, |
|
"type": brat_entity["type"], |
|
} |
|
for brat_entity in brat_example["relations"] |
|
], |
|
} |
|
|
|
return source_example |
|
|
|
def get_document_type_and_text_type(self, input_file: Path) -> Tuple[str, str]: |
|
""" |
|
Implementation used from |
|
https://github.com/bigscience-workshop/biomedical/blob/master/biodatasets/anat_em/anat_em.py |
|
|
|
Extracts the document type (PubMed(PM) or PubMedCentral (PMC)) and the respective |
|
text type (abstract for PM and sec or caption for (PMC) from the name of the given |
|
file, e.g.: |
|
|
|
PMID-9778569.txt -> ("PM", "abstract") |
|
|
|
PMC-1274342-sec-02.txt -> ("PMC", "sec") |
|
|
|
PMC-1592597-caption-02.ann -> ("PMC", "caption") |
|
|
|
""" |
|
name_parts = str(input_file.stem).split("-") |
|
|
|
if name_parts[0] == "PMID": |
|
return "PM", "abstract" |
|
|
|
elif name_parts[0] == "PMC": |
|
return "PMC", name_parts[2] |
|
else: |
|
raise AssertionError(f"Unexpected file prefix {name_parts[0]}") |
|
|