import datasets import pickle _DESCRIPTION = """\ Dataset for storing training metrics of pythia models """ class PythiaTrainingMetrics(datasets.GeneratorBasedBuilder): MODEL_SIZES = [ "14m" ] _GRADIENTS_DESCRIPTION = """\ Dataset for storing gradients of pythia models of the requested model size """ _WEIGHTS_DESCRIPTION = """\ Dataset for storing weights of pythia models of the requested model size """ _WEIGHTS_MINI_DESCRIPTION = """\ Dataset for storing weights of pythia models (minimizes the amount of gradients per checkpoint to only 2) of the requested model size """ _ACTIVATIONS_DESCRIPTION = """\ Dataset for storing activations of pythia models of the requested model size """ BUILDER_CONFIGS = [] for model_size in MODEL_SIZES: BUILDER_CONFIGS.extend([ datasets.BuilderConfig( name=f"{model_size}__gradients", description=_WEIGHTS_DESCRIPTION, version="1.0.0", ), datasets.BuilderConfig( name=f"{model_size}__gradients_mini", description=_WEIGHTS_MINI_DESCRIPTION, version="1.0.0", ), datasets.BuilderConfig( name=f"{model_size}__activations", description=_ACTIVATIONS_DESCRIPTION, version="1.0.0", ), datasets.BuilderConfig( name=f"{model_size}__weights", description=_WEIGHTS_DESCRIPTION, version="1.0.0", ), ]) def _info(self): """ NOTE: we might want to specify features, but since the features are different for each model size it's annoying and kind of pointless since hf does it automatically """ return datasets.DatasetInfo( description=_DESCRIPTION, ) def _split_generators(self, dl_manager: datasets.DownloadManager): """ Returns data for different splits - we define a split as a model size. """ to_download_files = [] kwargs_checkpoint_steps = [] kwargs_gradient_steps = [] checkpoint_steps = [0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1000, 2000, 3000, 4000, 4091] def get_gradient_step(step: int): """ Return a list of the gradient steps that are used at a given checkpoint step. """ return list(range(max(0, step-5), min(step+6, 4091))) def get_gradient_mini_step(step: int): """ Return a list of the gradient steps that are used at a given checkpoint step, we limit the amount of gradients to only 2. """ if step != checkpoint_steps[-1]: return [step, step+1] else: return [step-2, step-1] model_size = self.config.name.split("__")[0] for checkpoint_step in checkpoint_steps: directory_path = f"./models/{model_size}/checkpoint_{checkpoint_step}" if "activations" in self.config.name: to_download_files.append(f"{directory_path}/checkpoint_activations.pickle") kwargs_checkpoint_steps.append(checkpoint_step) elif "weights" in self.config.name: to_download_files.append(f"{directory_path}/checkpoint_weights.pickle") kwargs_checkpoint_steps.append(checkpoint_step) elif "gradients" in self.config.name: if "mini" in self.config.name: gradient_steps = get_gradient_mini_step(checkpoint_step) else: gradient_steps = get_gradient_step(checkpoint_step) for gradient_step in gradient_steps: to_download_files.append(f"{directory_path}/checkpoint_gradients_{gradient_step}.pickle") kwargs_checkpoint_steps.append(checkpoint_step) kwargs_gradient_steps.append(gradient_step) else: raise Exception("Invalid config name") downloaded_files = dl_manager.download_and_extract(to_download_files) return [ datasets.SplitGenerator( name='default', gen_kwargs={ "filepaths": downloaded_files, "checkpoint_steps": kwargs_checkpoint_steps, **({"gradient_steps": kwargs_gradient_steps} if "gradients" in self.config.name else {}), } ) ] def _generate_examples(self, filepaths, checkpoint_steps, **kwargs): # the filepaths should be a list of filepaths if isinstance(filepaths, str): filepaths = [filepaths] if "gradients" in self.config.name: gradient_steps = kwargs["gradient_steps"] global_idx = 0 # the unique identifier for the example for idx, filepath in enumerate(filepaths): with open(filepath, 'rb') as f: data = pickle.load(f) for layer_name, layer_data in data.items(): record = { "checkpoint_step": checkpoint_steps[idx], "layer_name": layer_name, "data": layer_data, } if "gradients" in self.config.name: record['gradient_step'] = gradient_steps[idx] yield global_idx, record global_idx += 1