Upload data_pre-processing.py
Browse files- data_pre-processing.py +55 -0
data_pre-processing.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Mon Mar 4 09:26:03 2024
|
4 |
+
|
5 |
+
@author: Bethany
|
6 |
+
"""
|
7 |
+
|
8 |
+
import pandas as pd
|
9 |
+
|
10 |
+
# import data
|
11 |
+
totals_data = pd.read_csv("https://files.digital.nhs.uk/22/D11E7E/HES_M9_2324_OPEN_DATA.csv")
|
12 |
+
age_groups_data = pd.read_csv("https://files.digital.nhs.uk/D3/2CB1B4/HES_M9_2324_OPEN_DATA_AGE_GROUPS.csv")
|
13 |
+
specialties_data = pd.read_csv("https://files.digital.nhs.uk/F2/461394/HES_M9_2324_OPEN_DATA_TREATMENT_SPECIALTY.csv")
|
14 |
+
|
15 |
+
# change column names on totals_data to match other files
|
16 |
+
totals_data = totals_data.rename(columns = {"APC_Finished_Consultant":"FCE",
|
17 |
+
"APC_FCEs_with_a_procedure":"FCEs_With_Procedure",
|
18 |
+
"APC_Ordinary_Episodes":"Ordinary_Admission_Episodes",
|
19 |
+
"APC_Day_Case_Episodes":"FCE_DAY_CASES",
|
20 |
+
"APC_Day_Case_Episodes_with_proc":"FCE_DAY_WITH_PROCEDURE",
|
21 |
+
"APC_Finished_Admission_Episodes":"FAE",
|
22 |
+
"APC_Emergency":"EMERGENCY",
|
23 |
+
"Outpatient_Total_Appointments":"Total_Appointments",
|
24 |
+
"Outpatient_Attended_Appointments":"Attended_Appointments",
|
25 |
+
"Outpatient_DNA_Appointment":"DNA_Appointments",
|
26 |
+
"Outpatient_Attendance_Type_1":"First_Attendance",
|
27 |
+
"Outpatient_Attendance_Type_2":"Follow_Up_Attendance"}
|
28 |
+
)
|
29 |
+
|
30 |
+
# initialise empty dictionary
|
31 |
+
HES_data= {"months":[]}
|
32 |
+
# loop through previous dicts for all months
|
33 |
+
for month in totals_data["CALENDAR_MONTH_END_DATE"][:69]:
|
34 |
+
month_dict = {}
|
35 |
+
month_dict.update({"month":list(totals_data["CALENDAR_MONTH_END_DATE"])[list(totals_data["CALENDAR_MONTH_END_DATE"]).index(month)]})
|
36 |
+
month_dict.update({c:{} for c in age_groups_data.columns[5:]})
|
37 |
+
|
38 |
+
for key in list(month_dict.keys())[1:]:
|
39 |
+
# fill in sub-dictionaries with values from the three different csvs
|
40 |
+
month_dict[key].update({"total":totals_data[key][0],
|
41 |
+
"age_bands":[],
|
42 |
+
"specialties":[]})
|
43 |
+
|
44 |
+
for age in list(age_groups_data["Age_Band"].unique()):
|
45 |
+
age_bands = {"age_band":age,
|
46 |
+
key:age_groups_data[key][list(age_groups_data["Age_Band"].unique()).index(age)]}
|
47 |
+
month_dict[key]["age_bands"].append(age_bands)
|
48 |
+
|
49 |
+
for spec in list(specialties_data["TRETSPEF"].unique()):
|
50 |
+
specialties = {"treatment_specialty_code":spec,
|
51 |
+
"treatement_specialty_description":list(specialties_data["TRETSPEF_DESCRIPTION"].unique())[list(specialties_data["TRETSPEF"].unique()).index(spec)],
|
52 |
+
key:specialties_data[key][list(specialties_data["TRETSPEF"].unique()).index(spec)]}
|
53 |
+
month_dict[key]["specialties"].append(specialties)
|
54 |
+
|
55 |
+
HES_data["months"].append(month_dict)
|