atonyxu commited on
Commit
710552a
1 Parent(s): 2b66067

Upload folder using huggingface_hub

Browse files
Files changed (35) hide show
  1. furry/baobai/baobai8/bw.zip +3 -0
  2. furry/baobai/baobai8/configs/config.json +107 -0
  3. furry/baobai/baobai8/configs/diffusion.yaml +51 -0
  4. furry/baobai/baobai8/dataset.zip +3 -0
  5. furry/baobai/baobai8/filelists/train.txt +134 -0
  6. furry/baobai/baobai8/filelists/val.txt +2 -0
  7. furry/baobai/baobai8/logs/44k/D_0.pth +3 -0
  8. furry/baobai/baobai8/logs/44k/D_1600.pth +3 -0
  9. furry/baobai/baobai8/logs/44k/D_2400.pth +3 -0
  10. furry/baobai/baobai8/logs/44k/D_3200.pth +3 -0
  11. furry/baobai/baobai8/logs/44k/G_0.pth +3 -0
  12. furry/baobai/baobai8/logs/44k/G_1600.pth +3 -0
  13. furry/baobai/baobai8/logs/44k/G_2400.pth +3 -0
  14. furry/baobai/baobai8/logs/44k/G_3200.pth +3 -0
  15. furry/baobai/baobai8/logs/44k/config.json +107 -0
  16. furry/baobai/baobai8/logs/44k/diffusion/config.yaml +51 -0
  17. furry/baobai/baobai8/logs/44k/diffusion/log_info.txt +419 -0
  18. furry/baobai/baobai8/logs/44k/diffusion/logs/events.out.tfevents.1691855425.36ffdf771304.34252.0 +3 -0
  19. furry/baobai/baobai8/logs/44k/diffusion/model_0.pt +3 -0
  20. furry/baobai/baobai8/logs/44k/diffusion/model_4000.pt +3 -0
  21. furry/baobai/baobai8/logs/44k/eval/events.out.tfevents.1691849579.36ffdf771304.6041.1 +3 -0
  22. furry/baobai/baobai8/logs/44k/eval/events.out.tfevents.1691853899.36ffdf771304.26662.1 +3 -0
  23. furry/baobai/baobai8/logs/44k/eval/events.out.tfevents.1691853956.36ffdf771304.26984.1 +3 -0
  24. furry/baobai/baobai8/logs/44k/events.out.tfevents.1691849579.36ffdf771304.6041.0 +3 -0
  25. furry/baobai/baobai8/logs/44k/events.out.tfevents.1691853899.36ffdf771304.26662.0 +3 -0
  26. furry/baobai/baobai8/logs/44k/events.out.tfevents.1691853956.36ffdf771304.26984.0 +3 -0
  27. furry/baobai/baobai8/logs/44k/githash +1 -0
  28. furry/baobai/baobai8/logs/44k/release.pth +3 -0
  29. furry/baobai/baobai8/logs/44k/train.log +203 -0
  30. furry/baobai/baobai8/raw/再见深海n1.wav +3 -0
  31. furry/baobai/baobai8/raw/再见深海n2.wav +3 -0
  32. furry/baobai/baobai8/results/再见深海n1.wav_0key_bw_sovits_crepe.flac +3 -0
  33. furry/baobai/baobai8/results/再见深海n1.wav_0key_bw_sovits_dio.flac +3 -0
  34. furry/baobai/baobai8/results/再见深海n1.wav_0key_bw_sovits_fcpe.flac +3 -0
  35. furry/baobai/baobai8/results/再见深海n1.wav_0key_bw_sovits_rmvpe.flac +3 -0
furry/baobai/baobai8/bw.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d94f2241a34f7d256e2f0af41960ddaad8ead93ecd1f06539fd7d9353a74d3c
3
+ size 112497711
furry/baobai/baobai8/configs/config.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 800,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 0.0001,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 6,
14
+ "fp16_run": false,
15
+ "half_type": "fp16",
16
+ "lr_decay": 0.999875,
17
+ "segment_size": 10240,
18
+ "init_lr_ratio": 1,
19
+ "warmup_epochs": 0,
20
+ "c_mel": 45,
21
+ "c_kl": 1.0,
22
+ "use_sr": true,
23
+ "max_speclen": 512,
24
+ "port": "8001",
25
+ "keep_ckpts": 3,
26
+ "all_in_mem": false,
27
+ "vol_aug": false
28
+ },
29
+ "data": {
30
+ "training_files": "filelists/train.txt",
31
+ "validation_files": "filelists/val.txt",
32
+ "max_wav_value": 32768.0,
33
+ "sampling_rate": 44100,
34
+ "filter_length": 2048,
35
+ "hop_length": 512,
36
+ "win_length": 2048,
37
+ "n_mel_channels": 80,
38
+ "mel_fmin": 0.0,
39
+ "mel_fmax": 22050,
40
+ "unit_interpolate_mode": "nearest"
41
+ },
42
+ "model": {
43
+ "inter_channels": 192,
44
+ "hidden_channels": 192,
45
+ "filter_channels": 768,
46
+ "n_heads": 2,
47
+ "n_layers": 6,
48
+ "kernel_size": 3,
49
+ "p_dropout": 0.1,
50
+ "resblock": "1",
51
+ "resblock_kernel_sizes": [
52
+ 3,
53
+ 7,
54
+ 11
55
+ ],
56
+ "resblock_dilation_sizes": [
57
+ [
58
+ 1,
59
+ 3,
60
+ 5
61
+ ],
62
+ [
63
+ 1,
64
+ 3,
65
+ 5
66
+ ],
67
+ [
68
+ 1,
69
+ 3,
70
+ 5
71
+ ]
72
+ ],
73
+ "upsample_rates": [
74
+ 8,
75
+ 8,
76
+ 2,
77
+ 2,
78
+ 2
79
+ ],
80
+ "upsample_initial_channel": 512,
81
+ "upsample_kernel_sizes": [
82
+ 16,
83
+ 16,
84
+ 4,
85
+ 4,
86
+ 4
87
+ ],
88
+ "n_layers_q": 3,
89
+ "n_layers_trans_flow": 3,
90
+ "n_flow_layer": 4,
91
+ "use_spectral_norm": false,
92
+ "gin_channels": 768,
93
+ "ssl_dim": 768,
94
+ "n_speakers": 1,
95
+ "vocoder_name": "nsf-hifigan",
96
+ "speech_encoder": "vec768l12",
97
+ "speaker_embedding": false,
98
+ "vol_embedding": false,
99
+ "use_depthwise_conv": false,
100
+ "flow_share_parameter": false,
101
+ "use_automatic_f0_prediction": true,
102
+ "use_transformer_flow": false
103
+ },
104
+ "spk": {
105
+ "bw": 0
106
+ }
107
+ }
furry/baobai/baobai8/configs/diffusion.yaml ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ data:
2
+ block_size: 512
3
+ cnhubertsoft_gate: 10
4
+ duration: 2
5
+ encoder: vec768l12
6
+ encoder_hop_size: 320
7
+ encoder_out_channels: 768
8
+ encoder_sample_rate: 16000
9
+ extensions:
10
+ - wav
11
+ sampling_rate: 44100
12
+ training_files: filelists/train.txt
13
+ unit_interpolate_mode: nearest
14
+ validation_files: filelists/val.txt
15
+ device: cuda
16
+ env:
17
+ expdir: logs/44k/diffusion
18
+ gpu_id: 0
19
+ infer:
20
+ method: dpm-solver++
21
+ speedup: 10
22
+ model:
23
+ k_step_max: 0
24
+ n_chans: 512
25
+ n_hidden: 256
26
+ n_layers: 20
27
+ n_spk: 1
28
+ timesteps: 1000
29
+ type: Diffusion
30
+ use_pitch_aug: true
31
+ spk:
32
+ bw: 0
33
+ train:
34
+ amp_dtype: fp32
35
+ batch_size: 48
36
+ cache_all_data: true
37
+ cache_device: cpu
38
+ cache_fp16: true
39
+ decay_step: 100000
40
+ epochs: 100000
41
+ gamma: 0.5
42
+ interval_force_save: 5000
43
+ interval_log: 10
44
+ interval_val: 2000
45
+ lr: 0.0001
46
+ num_workers: 4
47
+ save_opt: false
48
+ weight_decay: 0
49
+ vocoder:
50
+ ckpt: pretrain/nsf_hifigan/model
51
+ type: nsf-hifigan
furry/baobai/baobai8/dataset.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3c33356faed833ea97eb6d5a68e064ed42dbba6d2c1e8585332b418da27f30c
3
+ size 529618448
furry/baobai/baobai8/filelists/train.txt ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ./dataset/44k/bw/baobai__4_20.wav
2
+ ./dataset/44k/bw/baobai__4_0.wav
3
+ ./dataset/44k/bw/baobai__3_1.wav
4
+ ./dataset/44k/bw/baobai__1_15.wav
5
+ ./dataset/44k/bw/baobai__1_1.wav
6
+ ./dataset/44k/bw/baobai__3_8.wav
7
+ ./dataset/44k/bw/baobai__1_0.wav
8
+ ./dataset/44k/bw/baobai__3_24.wav
9
+ ./dataset/44k/bw/baobai__4_12.wav
10
+ ./dataset/44k/bw/baobai__1_19.wav
11
+ ./dataset/44k/bw/baobai__4_7.wav
12
+ ./dataset/44k/bw/baobai__1_5.wav
13
+ ./dataset/44k/bw/baobai__1_17.wav
14
+ ./dataset/44k/bw/baobai__4_8.wav
15
+ ./dataset/44k/bw/baobai__5_18.wav
16
+ ./dataset/44k/bw/baobai__5_6.wav
17
+ ./dataset/44k/bw/baobai__1_11.wav
18
+ ./dataset/44k/bw/baobai__3_20.wav
19
+ ./dataset/44k/bw/baobai__5_17.wav
20
+ ./dataset/44k/bw/baobai__1_24.wav
21
+ ./dataset/44k/bw/baobai__5_5.wav
22
+ ./dataset/44k/bw/baobai__5_33.wav
23
+ ./dataset/44k/bw/baobai__2_0.wav
24
+ ./dataset/44k/bw/baobai__3_2.wav
25
+ ./dataset/44k/bw/baobai__5_0.wav
26
+ ./dataset/44k/bw/baobai__3_13.wav
27
+ ./dataset/44k/bw/baobai__2_3.wav
28
+ ./dataset/44k/bw/baobai__1_20.wav
29
+ ./dataset/44k/bw/baobai__5_10.wav
30
+ ./dataset/44k/bw/baobai__4_2.wav
31
+ ./dataset/44k/bw/baobai__5_31.wav
32
+ ./dataset/44k/bw/baobai__5_12.wav
33
+ ./dataset/44k/bw/baobai__4_21.wav
34
+ ./dataset/44k/bw/baobai__4_14.wav
35
+ ./dataset/44k/bw/baobai__1_25.wav
36
+ ./dataset/44k/bw/baobai__4_10.wav
37
+ ./dataset/44k/bw/baobai__3_0.wav
38
+ ./dataset/44k/bw/baobai__2_14.wav
39
+ ./dataset/44k/bw/baobai__2_23.wav
40
+ ./dataset/44k/bw/baobai__5_23.wav
41
+ ./dataset/44k/bw/baobai__3_23.wav
42
+ ./dataset/44k/bw/baobai__1_23.wav
43
+ ./dataset/44k/bw/baobai__2_15.wav
44
+ ./dataset/44k/bw/baobai__3_17.wav
45
+ ./dataset/44k/bw/baobai__2_9.wav
46
+ ./dataset/44k/bw/baobai__2_8.wav
47
+ ./dataset/44k/bw/baobai__1_3.wav
48
+ ./dataset/44k/bw/baobai__1_2.wav
49
+ ./dataset/44k/bw/baobai__1_22.wav
50
+ ./dataset/44k/bw/baobai__5_19.wav
51
+ ./dataset/44k/bw/baobai__4_16.wav
52
+ ./dataset/44k/bw/baobai__5_3.wav
53
+ ./dataset/44k/bw/baobai__2_2.wav
54
+ ./dataset/44k/bw/baobai__5_14.wav
55
+ ./dataset/44k/bw/baobai__2_7.wav
56
+ ./dataset/44k/bw/baobai__3_4.wav
57
+ ./dataset/44k/bw/baobai__5_22.wav
58
+ ./dataset/44k/bw/baobai__2_17.wav
59
+ ./dataset/44k/bw/baobai__1_10.wav
60
+ ./dataset/44k/bw/baobai__3_21.wav
61
+ ./dataset/44k/bw/baobai__1_8.wav
62
+ ./dataset/44k/bw/baobai__5_13.wav
63
+ ./dataset/44k/bw/baobai__2_1.wav
64
+ ./dataset/44k/bw/baobai__1_27.wav
65
+ ./dataset/44k/bw/baobai__3_14.wav
66
+ ./dataset/44k/bw/baobai__1_12.wav
67
+ ./dataset/44k/bw/baobai__2_11.wav
68
+ ./dataset/44k/bw/baobai__1_6.wav
69
+ ./dataset/44k/bw/baobai__4_19.wav
70
+ ./dataset/44k/bw/baobai__5_7.wav
71
+ ./dataset/44k/bw/baobai__4_17.wav
72
+ ./dataset/44k/bw/baobai__4_1.wav
73
+ ./dataset/44k/bw/baobai__2_12.wav
74
+ ./dataset/44k/bw/baobai__1_7.wav
75
+ ./dataset/44k/bw/baobai__1_18.wav
76
+ ./dataset/44k/bw/baobai__2_6.wav
77
+ ./dataset/44k/bw/baobai__5_30.wav
78
+ ./dataset/44k/bw/baobai__3_19.wav
79
+ ./dataset/44k/bw/baobai__4_6.wav
80
+ ./dataset/44k/bw/baobai__3_16.wav
81
+ ./dataset/44k/bw/baobai__3_5.wav
82
+ ./dataset/44k/bw/baobai__5_4.wav
83
+ ./dataset/44k/bw/baobai__3_12.wav
84
+ ./dataset/44k/bw/baobai__5_24.wav
85
+ ./dataset/44k/bw/baobai__2_5.wav
86
+ ./dataset/44k/bw/baobai__4_9.wav
87
+ ./dataset/44k/bw/baobai__3_22.wav
88
+ ./dataset/44k/bw/baobai__1_4.wav
89
+ ./dataset/44k/bw/baobai__3_9.wav
90
+ ./dataset/44k/bw/baobai__5_16.wav
91
+ ./dataset/44k/bw/baobai__5_9.wav
92
+ ./dataset/44k/bw/baobai__2_10.wav
93
+ ./dataset/44k/bw/baobai__5_32.wav
94
+ ./dataset/44k/bw/baobai__2_16.wav
95
+ ./dataset/44k/bw/baobai__5_11.wav
96
+ ./dataset/44k/bw/baobai__3_7.wav
97
+ ./dataset/44k/bw/baobai__4_13.wav
98
+ ./dataset/44k/bw/baobai__2_4.wav
99
+ ./dataset/44k/bw/baobai__5_26.wav
100
+ ./dataset/44k/bw/baobai__5_1.wav
101
+ ./dataset/44k/bw/baobai__3_6.wav
102
+ ./dataset/44k/bw/baobai__2_18.wav
103
+ ./dataset/44k/bw/baobai__1_9.wav
104
+ ./dataset/44k/bw/baobai__3_18.wav
105
+ ./dataset/44k/bw/baobai__4_11.wav
106
+ ./dataset/44k/bw/baobai__4_3.wav
107
+ ./dataset/44k/bw/baobai__2_13.wav
108
+ ./dataset/44k/bw/baobai__4_4.wav
109
+ ./dataset/44k/bw/baobai__3_26.wav
110
+ ./dataset/44k/bw/baobai__1_14.wav
111
+ ./dataset/44k/bw/baobai__2_21.wav
112
+ ./dataset/44k/bw/baobai__2_19.wav
113
+ ./dataset/44k/bw/baobai__1_21.wav
114
+ ./dataset/44k/bw/baobai__5_21.wav
115
+ ./dataset/44k/bw/baobai__1_13.wav
116
+ ./dataset/44k/bw/baobai__1_16.wav
117
+ ./dataset/44k/bw/baobai__5_2.wav
118
+ ./dataset/44k/bw/baobai__5_28.wav
119
+ ./dataset/44k/bw/baobai__4_15.wav
120
+ ./dataset/44k/bw/baobai__5_29.wav
121
+ ./dataset/44k/bw/baobai__5_15.wav
122
+ ./dataset/44k/bw/baobai__4_5.wav
123
+ ./dataset/44k/bw/baobai__5_8.wav
124
+ ./dataset/44k/bw/baobai__3_15.wav
125
+ ./dataset/44k/bw/baobai__2_24.wav
126
+ ./dataset/44k/bw/baobai__2_20.wav
127
+ ./dataset/44k/bw/baobai__4_18.wav
128
+ ./dataset/44k/bw/baobai__3_11.wav
129
+ ./dataset/44k/bw/baobai__5_20.wav
130
+ ./dataset/44k/bw/baobai__5_27.wav
131
+ ./dataset/44k/bw/baobai__2_22.wav
132
+ ./dataset/44k/bw/baobai__3_25.wav
133
+ ./dataset/44k/bw/baobai__5_25.wav
134
+ ./dataset/44k/bw/baobai__3_3.wav
furry/baobai/baobai8/filelists/val.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ./dataset/44k/bw/baobai__3_10.wav
2
+ ./dataset/44k/bw/baobai__1_26.wav
furry/baobai/baobai8/logs/44k/D_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:273a1da965da0f3b51c7f630c3aa1bf0ef4739da4ab367a9f063a6e12058e8ce
3
+ size 187027770
furry/baobai/baobai8/logs/44k/D_1600.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddd0cffbe549e52de6b3a47d51a086fe53fbed33931d00116f2aee78129e37d9
3
+ size 561093259
furry/baobai/baobai8/logs/44k/D_2400.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97e91545896be1439ba14e31ea939b8c38fbe101d94feb1cae14ed47169b8ca4
3
+ size 561093259
furry/baobai/baobai8/logs/44k/D_3200.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:753b3753c3060a91b66a290da8fe15244a8dcde419ff50e2805a7e9a6398ce5b
3
+ size 561093259
furry/baobai/baobai8/logs/44k/G_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da86273856084312fcae6c6adc50f7149baab67693ea9f896117ad20c076dd2e
3
+ size 209268661
furry/baobai/baobai8/logs/44k/G_1600.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d6e4aac4978c69f490dcb97e7a61db2c9278ec1024a6cb03e22d1e46aa2971d
3
+ size 627897375
furry/baobai/baobai8/logs/44k/G_2400.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:700d4972e5672de792414ded84820c6d0346909bde24b3fe4ccb39e151278e88
3
+ size 627897375
furry/baobai/baobai8/logs/44k/G_3200.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2db9491f963a941e09e88c606ad376bfab09e8db79262fba0db867f701da2d31
3
+ size 627897375
furry/baobai/baobai8/logs/44k/config.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 800,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 0.0001,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 6,
14
+ "fp16_run": false,
15
+ "half_type": "fp16",
16
+ "lr_decay": 0.999875,
17
+ "segment_size": 10240,
18
+ "init_lr_ratio": 1,
19
+ "warmup_epochs": 0,
20
+ "c_mel": 45,
21
+ "c_kl": 1.0,
22
+ "use_sr": true,
23
+ "max_speclen": 512,
24
+ "port": "8001",
25
+ "keep_ckpts": 3,
26
+ "all_in_mem": false,
27
+ "vol_aug": false
28
+ },
29
+ "data": {
30
+ "training_files": "filelists/train.txt",
31
+ "validation_files": "filelists/val.txt",
32
+ "max_wav_value": 32768.0,
33
+ "sampling_rate": 44100,
34
+ "filter_length": 2048,
35
+ "hop_length": 512,
36
+ "win_length": 2048,
37
+ "n_mel_channels": 80,
38
+ "mel_fmin": 0.0,
39
+ "mel_fmax": 22050,
40
+ "unit_interpolate_mode": "nearest"
41
+ },
42
+ "model": {
43
+ "inter_channels": 192,
44
+ "hidden_channels": 192,
45
+ "filter_channels": 768,
46
+ "n_heads": 2,
47
+ "n_layers": 6,
48
+ "kernel_size": 3,
49
+ "p_dropout": 0.1,
50
+ "resblock": "1",
51
+ "resblock_kernel_sizes": [
52
+ 3,
53
+ 7,
54
+ 11
55
+ ],
56
+ "resblock_dilation_sizes": [
57
+ [
58
+ 1,
59
+ 3,
60
+ 5
61
+ ],
62
+ [
63
+ 1,
64
+ 3,
65
+ 5
66
+ ],
67
+ [
68
+ 1,
69
+ 3,
70
+ 5
71
+ ]
72
+ ],
73
+ "upsample_rates": [
74
+ 8,
75
+ 8,
76
+ 2,
77
+ 2,
78
+ 2
79
+ ],
80
+ "upsample_initial_channel": 512,
81
+ "upsample_kernel_sizes": [
82
+ 16,
83
+ 16,
84
+ 4,
85
+ 4,
86
+ 4
87
+ ],
88
+ "n_layers_q": 3,
89
+ "n_layers_trans_flow": 3,
90
+ "n_flow_layer": 4,
91
+ "use_spectral_norm": false,
92
+ "gin_channels": 768,
93
+ "ssl_dim": 768,
94
+ "n_speakers": 1,
95
+ "vocoder_name": "nsf-hifigan",
96
+ "speech_encoder": "vec768l12",
97
+ "speaker_embedding": false,
98
+ "vol_embedding": false,
99
+ "use_depthwise_conv": false,
100
+ "flow_share_parameter": false,
101
+ "use_automatic_f0_prediction": true,
102
+ "use_transformer_flow": false
103
+ },
104
+ "spk": {
105
+ "bw": 0
106
+ }
107
+ }
furry/baobai/baobai8/logs/44k/diffusion/config.yaml ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ data:
2
+ block_size: 512
3
+ cnhubertsoft_gate: 10
4
+ duration: 2
5
+ encoder: vec768l12
6
+ encoder_hop_size: 320
7
+ encoder_out_channels: 768
8
+ encoder_sample_rate: 16000
9
+ extensions:
10
+ - wav
11
+ sampling_rate: 44100
12
+ training_files: filelists/train.txt
13
+ unit_interpolate_mode: nearest
14
+ validation_files: filelists/val.txt
15
+ device: cuda
16
+ env:
17
+ expdir: logs/44k/diffusion
18
+ gpu_id: 0
19
+ infer:
20
+ method: dpm-solver++
21
+ speedup: 10
22
+ model:
23
+ k_step_max: 0
24
+ n_chans: 512
25
+ n_hidden: 256
26
+ n_layers: 20
27
+ n_spk: 1
28
+ timesteps: 1000
29
+ type: Diffusion
30
+ use_pitch_aug: true
31
+ spk:
32
+ bw: 0
33
+ train:
34
+ amp_dtype: fp32
35
+ batch_size: 48
36
+ cache_all_data: true
37
+ cache_device: cpu
38
+ cache_fp16: true
39
+ decay_step: 100000
40
+ epochs: 100000
41
+ gamma: 0.5
42
+ interval_force_save: 5000
43
+ interval_log: 10
44
+ interval_val: 2000
45
+ lr: 0.0001
46
+ num_workers: 4
47
+ save_opt: false
48
+ weight_decay: 0
49
+ vocoder:
50
+ ckpt: pretrain/nsf_hifigan/model
51
+ type: nsf-hifigan
furry/baobai/baobai8/logs/44k/diffusion/log_info.txt ADDED
@@ -0,0 +1,419 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ --- model size ---
2
+ model: 55,192,704
3
+ ======= start training =======
4
+ epoch|batch_idx/num_batches|output_dir|batch/s|lr|time|step
5
+ epoch: 3 | 0/ 3 | logs/44k/diffusion | batch/s: 1.00 | lr: 0.0001 | loss: 0.023 | time: 0:00:10.5 | step: 10
6
+ epoch: 6 | 1/ 3 | logs/44k/diffusion | batch/s: 1.22 | lr: 0.0001 | loss: 0.027 | time: 0:00:18.7 | step: 20
7
+ epoch: 9 | 2/ 3 | logs/44k/diffusion | batch/s: 1.23 | lr: 0.0001 | loss: 0.011 | time: 0:00:26.7 | step: 30
8
+ epoch: 13 | 0/ 3 | logs/44k/diffusion | batch/s: 1.22 | lr: 0.0001 | loss: 0.011 | time: 0:00:35.1 | step: 40
9
+ epoch: 16 | 1/ 3 | logs/44k/diffusion | batch/s: 1.20 | lr: 0.0001 | loss: 0.020 | time: 0:00:43.5 | step: 50
10
+ epoch: 19 | 2/ 3 | logs/44k/diffusion | batch/s: 1.19 | lr: 0.0001 | loss: 0.007 | time: 0:00:51.7 | step: 60
11
+ epoch: 23 | 0/ 3 | logs/44k/diffusion | batch/s: 1.18 | lr: 0.0001 | loss: 0.004 | time: 0:01:00.3 | step: 70
12
+ epoch: 26 | 1/ 3 | logs/44k/diffusion | batch/s: 1.18 | lr: 0.0001 | loss: 0.016 | time: 0:01:08.9 | step: 80
13
+ epoch: 29 | 2/ 3 | logs/44k/diffusion | batch/s: 1.17 | lr: 0.0001 | loss: 0.038 | time: 0:01:17.2 | step: 90
14
+ epoch: 33 | 0/ 3 | logs/44k/diffusion | batch/s: 1.17 | lr: 0.0001 | loss: 0.007 | time: 0:01:25.9 | step: 100
15
+ epoch: 36 | 1/ 3 | logs/44k/diffusion | batch/s: 1.16 | lr: 0.0001 | loss: 0.048 | time: 0:01:34.6 | step: 110
16
+ epoch: 39 | 2/ 3 | logs/44k/diffusion | batch/s: 1.16 | lr: 0.0001 | loss: 0.009 | time: 0:01:43.0 | step: 120
17
+ epoch: 43 | 0/ 3 | logs/44k/diffusion | batch/s: 1.17 | lr: 0.0001 | loss: 0.038 | time: 0:01:51.7 | step: 130
18
+ epoch: 46 | 1/ 3 | logs/44k/diffusion | batch/s: 1.15 | lr: 0.0001 | loss: 0.016 | time: 0:02:00.4 | step: 140
19
+ epoch: 49 | 2/ 3 | logs/44k/diffusion | batch/s: 1.15 | lr: 0.0001 | loss: 0.013 | time: 0:02:08.9 | step: 150
20
+ epoch: 53 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.007 | time: 0:02:18.0 | step: 160
21
+ epoch: 56 | 1/ 3 | logs/44k/diffusion | batch/s: 1.10 | lr: 0.0001 | loss: 0.031 | time: 0:02:27.1 | step: 170
22
+ epoch: 59 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.027 | time: 0:02:35.9 | step: 180
23
+ epoch: 63 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.015 | time: 0:02:44.9 | step: 190
24
+ epoch: 66 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.005 | time: 0:02:53.9 | step: 200
25
+ epoch: 69 | 2/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.011 | time: 0:03:02.5 | step: 210
26
+ epoch: 73 | 0/ 3 | logs/44k/diffusion | batch/s: 1.14 | lr: 0.0001 | loss: 0.026 | time: 0:03:11.5 | step: 220
27
+ epoch: 76 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.029 | time: 0:03:20.3 | step: 230
28
+ epoch: 79 | 2/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.012 | time: 0:03:29.0 | step: 240
29
+ epoch: 83 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.032 | time: 0:03:38.0 | step: 250
30
+ epoch: 86 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.005 | time: 0:03:47.0 | step: 260
31
+ epoch: 89 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.006 | time: 0:03:55.8 | step: 270
32
+ epoch: 93 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.026 | time: 0:04:04.9 | step: 280
33
+ epoch: 96 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.033 | time: 0:04:13.9 | step: 290
34
+ epoch: 99 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.035 | time: 0:04:22.7 | step: 300
35
+ epoch: 103 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.018 | time: 0:04:31.8 | step: 310
36
+ epoch: 106 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.027 | time: 0:04:40.8 | step: 320
37
+ epoch: 109 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.022 | time: 0:04:49.6 | step: 330
38
+ epoch: 113 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.022 | time: 0:04:58.7 | step: 340
39
+ epoch: 116 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.011 | time: 0:05:07.7 | step: 350
40
+ epoch: 119 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.026 | time: 0:05:16.4 | step: 360
41
+ epoch: 123 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.020 | time: 0:05:25.4 | step: 370
42
+ epoch: 126 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.025 | time: 0:05:34.4 | step: 380
43
+ epoch: 129 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.004 | time: 0:05:43.1 | step: 390
44
+ epoch: 133 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.024 | time: 0:05:52.2 | step: 400
45
+ epoch: 136 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.039 | time: 0:06:01.2 | step: 410
46
+ epoch: 139 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.018 | time: 0:06:09.9 | step: 420
47
+ epoch: 143 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.023 | time: 0:06:19.1 | step: 430
48
+ epoch: 146 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.019 | time: 0:06:28.1 | step: 440
49
+ epoch: 149 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.012 | time: 0:06:36.9 | step: 450
50
+ epoch: 153 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.008 | time: 0:06:46.0 | step: 460
51
+ epoch: 156 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.019 | time: 0:06:55.0 | step: 470
52
+ epoch: 159 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.026 | time: 0:07:03.8 | step: 480
53
+ epoch: 163 | 0/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.009 | time: 0:07:13.0 | step: 490
54
+ epoch: 166 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.011 | time: 0:07:22.0 | step: 500
55
+ epoch: 169 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.020 | time: 0:07:30.8 | step: 510
56
+ epoch: 173 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.024 | time: 0:07:40.0 | step: 520
57
+ epoch: 176 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.035 | time: 0:07:49.0 | step: 530
58
+ epoch: 179 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.008 | time: 0:07:57.8 | step: 540
59
+ epoch: 183 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.009 | time: 0:08:06.9 | step: 550
60
+ epoch: 186 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.006 | time: 0:08:16.0 | step: 560
61
+ epoch: 189 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.012 | time: 0:08:24.8 | step: 570
62
+ epoch: 193 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.011 | time: 0:08:33.9 | step: 580
63
+ epoch: 196 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.007 | time: 0:08:42.9 | step: 590
64
+ epoch: 199 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.014 | time: 0:08:51.7 | step: 600
65
+ epoch: 203 | 0/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.016 | time: 0:09:00.9 | step: 610
66
+ epoch: 206 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.023 | time: 0:09:09.9 | step: 620
67
+ epoch: 209 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.018 | time: 0:09:18.7 | step: 630
68
+ epoch: 213 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.016 | time: 0:09:27.9 | step: 640
69
+ epoch: 216 | 1/ 3 | logs/44k/diffusion | batch/s: 1.10 | lr: 0.0001 | loss: 0.020 | time: 0:09:36.9 | step: 650
70
+ epoch: 219 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.024 | time: 0:09:45.7 | step: 660
71
+ epoch: 223 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.012 | time: 0:09:54.8 | step: 670
72
+ epoch: 226 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.010 | time: 0:10:03.8 | step: 680
73
+ epoch: 229 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.003 | time: 0:10:12.5 | step: 690
74
+ epoch: 233 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.007 | time: 0:10:21.6 | step: 700
75
+ epoch: 236 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.017 | time: 0:10:30.6 | step: 710
76
+ epoch: 239 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.041 | time: 0:10:39.3 | step: 720
77
+ epoch: 243 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.004 | time: 0:10:48.4 | step: 730
78
+ epoch: 246 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.023 | time: 0:10:57.3 | step: 740
79
+ epoch: 249 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.025 | time: 0:11:06.1 | step: 750
80
+ epoch: 253 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.010 | time: 0:11:15.1 | step: 760
81
+ epoch: 256 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.035 | time: 0:11:24.0 | step: 770
82
+ epoch: 259 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.021 | time: 0:11:32.7 | step: 780
83
+ epoch: 263 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.034 | time: 0:11:41.8 | step: 790
84
+ epoch: 266 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.019 | time: 0:11:50.7 | step: 800
85
+ epoch: 269 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.012 | time: 0:11:59.5 | step: 810
86
+ epoch: 273 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.004 | time: 0:12:08.6 | step: 820
87
+ epoch: 276 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.009 | time: 0:12:17.5 | step: 830
88
+ epoch: 279 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.024 | time: 0:12:26.2 | step: 840
89
+ epoch: 283 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.054 | time: 0:12:35.3 | step: 850
90
+ epoch: 286 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.005 | time: 0:12:44.2 | step: 860
91
+ epoch: 289 | 2/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.014 | time: 0:12:52.9 | step: 870
92
+ epoch: 293 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.029 | time: 0:13:02.0 | step: 880
93
+ epoch: 296 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.015 | time: 0:13:10.9 | step: 890
94
+ epoch: 299 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.021 | time: 0:13:19.6 | step: 900
95
+ epoch: 303 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.019 | time: 0:13:28.7 | step: 910
96
+ epoch: 306 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.008 | time: 0:13:37.7 | step: 920
97
+ epoch: 309 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.004 | time: 0:13:46.4 | step: 930
98
+ epoch: 313 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.016 | time: 0:13:55.6 | step: 940
99
+ epoch: 316 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.025 | time: 0:14:04.5 | step: 950
100
+ epoch: 319 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.025 | time: 0:14:13.3 | step: 960
101
+ epoch: 323 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.017 | time: 0:14:22.4 | step: 970
102
+ epoch: 326 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.025 | time: 0:14:31.5 | step: 980
103
+ epoch: 329 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.012 | time: 0:14:40.3 | step: 990
104
+ epoch: 333 | 0/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.010 | time: 0:14:49.4 | step: 1000
105
+ epoch: 336 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.020 | time: 0:14:58.5 | step: 1010
106
+ epoch: 339 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.014 | time: 0:15:07.3 | step: 1020
107
+ epoch: 343 | 0/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.038 | time: 0:15:16.5 | step: 1030
108
+ epoch: 346 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.025 | time: 0:15:25.5 | step: 1040
109
+ epoch: 349 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.018 | time: 0:15:34.3 | step: 1050
110
+ epoch: 353 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.011 | time: 0:15:43.4 | step: 1060
111
+ epoch: 356 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.026 | time: 0:15:52.5 | step: 1070
112
+ epoch: 359 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.005 | time: 0:16:01.3 | step: 1080
113
+ epoch: 363 | 0/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.004 | time: 0:16:10.5 | step: 1090
114
+ epoch: 366 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.022 | time: 0:16:19.5 | step: 1100
115
+ epoch: 369 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.009 | time: 0:16:28.3 | step: 1110
116
+ epoch: 373 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.010 | time: 0:16:37.4 | step: 1120
117
+ epoch: 376 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.021 | time: 0:16:46.4 | step: 1130
118
+ epoch: 379 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.037 | time: 0:16:55.1 | step: 1140
119
+ epoch: 383 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.020 | time: 0:17:04.2 | step: 1150
120
+ epoch: 386 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.016 | time: 0:17:13.2 | step: 1160
121
+ epoch: 389 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.026 | time: 0:17:21.9 | step: 1170
122
+ epoch: 393 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.014 | time: 0:17:30.9 | step: 1180
123
+ epoch: 396 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.013 | time: 0:17:39.9 | step: 1190
124
+ epoch: 399 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.022 | time: 0:17:48.7 | step: 1200
125
+ epoch: 403 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.015 | time: 0:17:57.7 | step: 1210
126
+ epoch: 406 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.021 | time: 0:18:06.7 | step: 1220
127
+ epoch: 409 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.023 | time: 0:18:15.4 | step: 1230
128
+ epoch: 413 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.024 | time: 0:18:24.5 | step: 1240
129
+ epoch: 416 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.004 | time: 0:18:33.4 | step: 1250
130
+ epoch: 419 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.007 | time: 0:18:42.1 | step: 1260
131
+ epoch: 423 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.011 | time: 0:18:51.1 | step: 1270
132
+ epoch: 426 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.015 | time: 0:19:00.1 | step: 1280
133
+ epoch: 429 | 2/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.013 | time: 0:19:08.8 | step: 1290
134
+ epoch: 433 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.009 | time: 0:19:17.8 | step: 1300
135
+ epoch: 436 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.015 | time: 0:19:26.8 | step: 1310
136
+ epoch: 439 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.009 | time: 0:19:35.5 | step: 1320
137
+ epoch: 443 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.012 | time: 0:19:44.6 | step: 1330
138
+ epoch: 446 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.017 | time: 0:19:53.5 | step: 1340
139
+ epoch: 449 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.002 | time: 0:20:02.3 | step: 1350
140
+ epoch: 453 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.014 | time: 0:20:11.3 | step: 1360
141
+ epoch: 456 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.003 | time: 0:20:20.2 | step: 1370
142
+ epoch: 459 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.012 | time: 0:20:29.0 | step: 1380
143
+ epoch: 463 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.009 | time: 0:20:38.0 | step: 1390
144
+ epoch: 466 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.018 | time: 0:20:47.0 | step: 1400
145
+ epoch: 469 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.007 | time: 0:20:55.7 | step: 1410
146
+ epoch: 473 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.019 | time: 0:21:04.8 | step: 1420
147
+ epoch: 476 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.012 | time: 0:21:13.8 | step: 1430
148
+ epoch: 479 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.008 | time: 0:21:22.6 | step: 1440
149
+ epoch: 483 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.014 | time: 0:21:31.7 | step: 1450
150
+ epoch: 486 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.014 | time: 0:21:40.7 | step: 1460
151
+ epoch: 489 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.015 | time: 0:21:49.5 | step: 1470
152
+ epoch: 493 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.005 | time: 0:21:58.6 | step: 1480
153
+ epoch: 496 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.008 | time: 0:22:07.6 | step: 1490
154
+ epoch: 499 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.008 | time: 0:22:16.3 | step: 1500
155
+ epoch: 503 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.014 | time: 0:22:25.4 | step: 1510
156
+ epoch: 506 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.038 | time: 0:22:34.4 | step: 1520
157
+ epoch: 509 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.012 | time: 0:22:43.1 | step: 1530
158
+ epoch: 513 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.013 | time: 0:22:52.3 | step: 1540
159
+ epoch: 516 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.024 | time: 0:23:01.3 | step: 1550
160
+ epoch: 519 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.022 | time: 0:23:10.0 | step: 1560
161
+ epoch: 523 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.021 | time: 0:23:19.1 | step: 1570
162
+ epoch: 526 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.029 | time: 0:23:28.1 | step: 1580
163
+ epoch: 529 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.007 | time: 0:23:36.8 | step: 1590
164
+ epoch: 533 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.016 | time: 0:23:45.9 | step: 1600
165
+ epoch: 536 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.009 | time: 0:23:54.8 | step: 1610
166
+ epoch: 539 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.003 | time: 0:24:03.6 | step: 1620
167
+ epoch: 543 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.015 | time: 0:24:12.7 | step: 1630
168
+ epoch: 546 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.014 | time: 0:24:21.7 | step: 1640
169
+ epoch: 549 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.012 | time: 0:24:30.4 | step: 1650
170
+ epoch: 553 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.003 | time: 0:24:39.4 | step: 1660
171
+ epoch: 556 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.027 | time: 0:24:48.4 | step: 1670
172
+ epoch: 559 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.012 | time: 0:24:57.2 | step: 1680
173
+ epoch: 563 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.013 | time: 0:25:06.3 | step: 1690
174
+ epoch: 566 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.012 | time: 0:25:15.3 | step: 1700
175
+ epoch: 569 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.015 | time: 0:25:24.1 | step: 1710
176
+ epoch: 573 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.008 | time: 0:25:33.2 | step: 1720
177
+ epoch: 576 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.020 | time: 0:25:42.2 | step: 1730
178
+ epoch: 579 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.014 | time: 0:25:51.0 | step: 1740
179
+ epoch: 583 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.007 | time: 0:26:00.1 | step: 1750
180
+ epoch: 586 | 1/ 3 | logs/44k/diffusion | batch/s: 1.10 | lr: 0.0001 | loss: 0.004 | time: 0:26:09.1 | step: 1760
181
+ epoch: 589 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.010 | time: 0:26:17.9 | step: 1770
182
+ epoch: 593 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.018 | time: 0:26:27.0 | step: 1780
183
+ epoch: 596 | 1/ 3 | logs/44k/diffusion | batch/s: 1.10 | lr: 0.0001 | loss: 0.004 | time: 0:26:36.1 | step: 1790
184
+ epoch: 599 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.013 | time: 0:26:44.8 | step: 1800
185
+ epoch: 603 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.008 | time: 0:26:54.0 | step: 1810
186
+ epoch: 606 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.022 | time: 0:27:03.0 | step: 1820
187
+ epoch: 609 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.028 | time: 0:27:11.8 | step: 1830
188
+ epoch: 613 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.008 | time: 0:27:20.9 | step: 1840
189
+ epoch: 616 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.010 | time: 0:27:29.9 | step: 1850
190
+ epoch: 619 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.003 | time: 0:27:38.7 | step: 1860
191
+ epoch: 623 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.015 | time: 0:27:47.9 | step: 1870
192
+ epoch: 626 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.022 | time: 0:27:56.9 | step: 1880
193
+ epoch: 629 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.009 | time: 0:28:05.7 | step: 1890
194
+ epoch: 633 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.031 | time: 0:28:14.8 | step: 1900
195
+ epoch: 636 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.006 | time: 0:28:23.8 | step: 1910
196
+ epoch: 639 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.016 | time: 0:28:32.5 | step: 1920
197
+ epoch: 643 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.009 | time: 0:28:41.7 | step: 1930
198
+ epoch: 646 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.025 | time: 0:28:50.7 | step: 1940
199
+ epoch: 649 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.030 | time: 0:28:59.4 | step: 1950
200
+ epoch: 653 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.009 | time: 0:29:08.4 | step: 1960
201
+ epoch: 656 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.027 | time: 0:29:17.4 | step: 1970
202
+ epoch: 659 | 2/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.006 | time: 0:29:26.1 | step: 1980
203
+ epoch: 663 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.024 | time: 0:29:35.1 | step: 1990
204
+ epoch: 666 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.010 | time: 0:29:44.1 | step: 2000
205
+ --- <validation> ---
206
+ loss: 0.010.
207
+ epoch: 669 | 2/ 3 | logs/44k/diffusion | batch/s: 0.39 | lr: 0.0001 | loss: 0.013 | time: 0:30:09.5 | step: 2010
208
+ epoch: 673 | 0/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.022 | time: 0:30:18.7 | step: 2020
209
+ epoch: 676 | 1/ 3 | logs/44k/diffusion | batch/s: 1.08 | lr: 0.0001 | loss: 0.018 | time: 0:30:27.9 | step: 2030
210
+ epoch: 679 | 2/ 3 | logs/44k/diffusion | batch/s: 1.09 | lr: 0.0001 | loss: 0.019 | time: 0:30:36.9 | step: 2040
211
+ epoch: 683 | 0/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.037 | time: 0:30:46.0 | step: 2050
212
+ epoch: 686 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.013 | time: 0:30:55.0 | step: 2060
213
+ epoch: 689 | 2/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.009 | time: 0:31:03.7 | step: 2070
214
+ epoch: 693 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.012 | time: 0:31:12.8 | step: 2080
215
+ epoch: 696 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.020 | time: 0:31:21.7 | step: 2090
216
+ epoch: 699 | 2/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.013 | time: 0:31:30.4 | step: 2100
217
+ epoch: 703 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.005 | time: 0:31:39.4 | step: 2110
218
+ epoch: 706 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.007 | time: 0:31:48.3 | step: 2120
219
+ epoch: 709 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.006 | time: 0:31:57.1 | step: 2130
220
+ epoch: 713 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.042 | time: 0:32:06.1 | step: 2140
221
+ epoch: 716 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.024 | time: 0:32:15.2 | step: 2150
222
+ epoch: 719 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.011 | time: 0:32:23.9 | step: 2160
223
+ epoch: 723 | 0/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.025 | time: 0:32:33.1 | step: 2170
224
+ epoch: 726 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.010 | time: 0:32:42.1 | step: 2180
225
+ epoch: 729 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.028 | time: 0:32:50.9 | step: 2190
226
+ epoch: 733 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.029 | time: 0:33:00.1 | step: 2200
227
+ epoch: 736 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.026 | time: 0:33:09.1 | step: 2210
228
+ epoch: 739 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.011 | time: 0:33:17.9 | step: 2220
229
+ epoch: 743 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.012 | time: 0:33:27.0 | step: 2230
230
+ epoch: 746 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.010 | time: 0:33:36.0 | step: 2240
231
+ epoch: 749 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.013 | time: 0:33:44.8 | step: 2250
232
+ epoch: 753 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.012 | time: 0:33:53.9 | step: 2260
233
+ epoch: 756 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.005 | time: 0:34:02.9 | step: 2270
234
+ epoch: 759 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.004 | time: 0:34:11.7 | step: 2280
235
+ epoch: 763 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.006 | time: 0:34:20.8 | step: 2290
236
+ epoch: 766 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.021 | time: 0:34:29.8 | step: 2300
237
+ epoch: 769 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.024 | time: 0:34:38.5 | step: 2310
238
+ epoch: 773 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.020 | time: 0:34:47.6 | step: 2320
239
+ epoch: 776 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.019 | time: 0:34:56.6 | step: 2330
240
+ epoch: 779 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.019 | time: 0:35:05.3 | step: 2340
241
+ epoch: 783 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.030 | time: 0:35:14.4 | step: 2350
242
+ epoch: 786 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.012 | time: 0:35:23.3 | step: 2360
243
+ epoch: 789 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.024 | time: 0:35:32.1 | step: 2370
244
+ epoch: 793 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.011 | time: 0:35:41.2 | step: 2380
245
+ epoch: 796 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.014 | time: 0:35:50.2 | step: 2390
246
+ epoch: 799 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.005 | time: 0:35:58.9 | step: 2400
247
+ epoch: 803 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.026 | time: 0:36:07.9 | step: 2410
248
+ epoch: 806 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.024 | time: 0:36:16.9 | step: 2420
249
+ epoch: 809 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.015 | time: 0:36:25.6 | step: 2430
250
+ epoch: 813 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.008 | time: 0:36:34.6 | step: 2440
251
+ epoch: 816 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.014 | time: 0:36:43.6 | step: 2450
252
+ epoch: 819 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.027 | time: 0:36:52.3 | step: 2460
253
+ epoch: 823 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.003 | time: 0:37:01.4 | step: 2470
254
+ epoch: 826 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.011 | time: 0:37:10.3 | step: 2480
255
+ epoch: 829 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.027 | time: 0:37:19.0 | step: 2490
256
+ epoch: 833 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.010 | time: 0:37:28.1 | step: 2500
257
+ epoch: 836 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.029 | time: 0:37:37.1 | step: 2510
258
+ epoch: 839 | 2/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.015 | time: 0:37:45.8 | step: 2520
259
+ epoch: 843 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.037 | time: 0:37:54.8 | step: 2530
260
+ epoch: 846 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.025 | time: 0:38:03.7 | step: 2540
261
+ epoch: 849 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.034 | time: 0:38:12.4 | step: 2550
262
+ epoch: 853 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.009 | time: 0:38:21.5 | step: 2560
263
+ epoch: 856 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.030 | time: 0:38:30.4 | step: 2570
264
+ epoch: 859 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.008 | time: 0:38:39.1 | step: 2580
265
+ epoch: 863 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.005 | time: 0:38:48.2 | step: 2590
266
+ epoch: 866 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.004 | time: 0:38:57.2 | step: 2600
267
+ epoch: 869 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.016 | time: 0:39:05.9 | step: 2610
268
+ epoch: 873 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.006 | time: 0:39:15.0 | step: 2620
269
+ epoch: 876 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.011 | time: 0:39:24.0 | step: 2630
270
+ epoch: 879 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.037 | time: 0:39:32.8 | step: 2640
271
+ epoch: 883 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.012 | time: 0:39:41.8 | step: 2650
272
+ epoch: 886 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.022 | time: 0:39:50.9 | step: 2660
273
+ epoch: 889 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.016 | time: 0:39:59.6 | step: 2670
274
+ epoch: 893 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.012 | time: 0:40:08.7 | step: 2680
275
+ epoch: 896 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.012 | time: 0:40:17.7 | step: 2690
276
+ epoch: 899 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.009 | time: 0:40:26.4 | step: 2700
277
+ epoch: 903 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.031 | time: 0:40:35.6 | step: 2710
278
+ epoch: 906 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.014 | time: 0:40:44.6 | step: 2720
279
+ epoch: 909 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.023 | time: 0:40:53.4 | step: 2730
280
+ epoch: 913 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.009 | time: 0:41:02.5 | step: 2740
281
+ epoch: 916 | 1/ 3 | logs/44k/diffusion | batch/s: 1.10 | lr: 0.0001 | loss: 0.020 | time: 0:41:11.6 | step: 2750
282
+ epoch: 919 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.023 | time: 0:41:20.4 | step: 2760
283
+ epoch: 923 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.009 | time: 0:41:29.5 | step: 2770
284
+ epoch: 926 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.023 | time: 0:41:38.5 | step: 2780
285
+ epoch: 929 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.030 | time: 0:41:47.2 | step: 2790
286
+ epoch: 933 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.002 | time: 0:41:56.3 | step: 2800
287
+ epoch: 936 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.006 | time: 0:42:05.3 | step: 2810
288
+ epoch: 939 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.015 | time: 0:42:14.1 | step: 2820
289
+ epoch: 943 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.021 | time: 0:42:23.1 | step: 2830
290
+ epoch: 946 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.021 | time: 0:42:32.1 | step: 2840
291
+ epoch: 949 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.009 | time: 0:42:40.9 | step: 2850
292
+ epoch: 953 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.013 | time: 0:42:50.0 | step: 2860
293
+ epoch: 956 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.017 | time: 0:42:59.0 | step: 2870
294
+ epoch: 959 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.016 | time: 0:43:07.7 | step: 2880
295
+ epoch: 963 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.009 | time: 0:43:16.8 | step: 2890
296
+ epoch: 966 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.022 | time: 0:43:25.8 | step: 2900
297
+ epoch: 969 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.031 | time: 0:43:34.5 | step: 2910
298
+ epoch: 973 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.010 | time: 0:43:43.7 | step: 2920
299
+ epoch: 976 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.012 | time: 0:43:52.7 | step: 2930
300
+ epoch: 979 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.023 | time: 0:44:01.4 | step: 2940
301
+ epoch: 983 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.031 | time: 0:44:10.5 | step: 2950
302
+ epoch: 986 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.008 | time: 0:44:19.5 | step: 2960
303
+ epoch: 989 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.015 | time: 0:44:28.3 | step: 2970
304
+ epoch: 993 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.020 | time: 0:44:37.4 | step: 2980
305
+ epoch: 996 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.014 | time: 0:44:46.4 | step: 2990
306
+ epoch: 999 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.005 | time: 0:44:55.2 | step: 3000
307
+ epoch: 1003 | 0/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.022 | time: 0:45:04.4 | step: 3010
308
+ epoch: 1006 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.006 | time: 0:45:13.4 | step: 3020
309
+ epoch: 1009 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.006 | time: 0:45:22.2 | step: 3030
310
+ epoch: 1013 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.027 | time: 0:45:31.3 | step: 3040
311
+ epoch: 1016 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.009 | time: 0:45:40.2 | step: 3050
312
+ epoch: 1019 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.005 | time: 0:45:49.0 | step: 3060
313
+ epoch: 1023 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.015 | time: 0:45:58.1 | step: 3070
314
+ epoch: 1026 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.020 | time: 0:46:07.1 | step: 3080
315
+ epoch: 1029 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.009 | time: 0:46:15.8 | step: 3090
316
+ epoch: 1033 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.016 | time: 0:46:24.9 | step: 3100
317
+ epoch: 1036 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.011 | time: 0:46:33.9 | step: 3110
318
+ epoch: 1039 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.007 | time: 0:46:42.7 | step: 3120
319
+ epoch: 1043 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.013 | time: 0:46:51.8 | step: 3130
320
+ epoch: 1046 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.027 | time: 0:47:00.7 | step: 3140
321
+ epoch: 1049 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.021 | time: 0:47:09.5 | step: 3150
322
+ epoch: 1053 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.026 | time: 0:47:18.5 | step: 3160
323
+ epoch: 1056 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.007 | time: 0:47:27.5 | step: 3170
324
+ epoch: 1059 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.014 | time: 0:47:36.2 | step: 3180
325
+ epoch: 1063 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.026 | time: 0:47:45.2 | step: 3190
326
+ epoch: 1066 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.014 | time: 0:47:54.2 | step: 3200
327
+ epoch: 1069 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.024 | time: 0:48:02.9 | step: 3210
328
+ epoch: 1073 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.007 | time: 0:48:12.0 | step: 3220
329
+ epoch: 1076 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.013 | time: 0:48:20.9 | step: 3230
330
+ epoch: 1079 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.013 | time: 0:48:29.6 | step: 3240
331
+ epoch: 1083 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.008 | time: 0:48:38.7 | step: 3250
332
+ epoch: 1086 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.019 | time: 0:48:47.7 | step: 3260
333
+ epoch: 1089 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.017 | time: 0:48:56.4 | step: 3270
334
+ epoch: 1093 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.010 | time: 0:49:05.4 | step: 3280
335
+ epoch: 1096 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.007 | time: 0:49:14.3 | step: 3290
336
+ epoch: 1099 | 2/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.005 | time: 0:49:23.0 | step: 3300
337
+ epoch: 1103 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.010 | time: 0:49:32.1 | step: 3310
338
+ epoch: 1106 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.013 | time: 0:49:41.0 | step: 3320
339
+ epoch: 1109 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.021 | time: 0:49:49.7 | step: 3330
340
+ epoch: 1113 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.055 | time: 0:49:58.8 | step: 3340
341
+ epoch: 1116 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.027 | time: 0:50:07.8 | step: 3350
342
+ epoch: 1119 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.006 | time: 0:50:16.5 | step: 3360
343
+ epoch: 1123 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.007 | time: 0:50:25.5 | step: 3370
344
+ epoch: 1126 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.004 | time: 0:50:34.5 | step: 3380
345
+ epoch: 1129 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.011 | time: 0:50:43.2 | step: 3390
346
+ epoch: 1133 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.024 | time: 0:50:52.3 | step: 3400
347
+ epoch: 1136 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.031 | time: 0:51:01.3 | step: 3410
348
+ epoch: 1139 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.015 | time: 0:51:10.0 | step: 3420
349
+ epoch: 1143 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.006 | time: 0:51:19.1 | step: 3430
350
+ epoch: 1146 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.014 | time: 0:51:28.1 | step: 3440
351
+ epoch: 1149 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.019 | time: 0:51:36.8 | step: 3450
352
+ epoch: 1153 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.028 | time: 0:51:46.0 | step: 3460
353
+ epoch: 1156 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.025 | time: 0:51:55.0 | step: 3470
354
+ epoch: 1159 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.019 | time: 0:52:03.7 | step: 3480
355
+ epoch: 1163 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.014 | time: 0:52:12.8 | step: 3490
356
+ epoch: 1166 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.013 | time: 0:52:21.8 | step: 3500
357
+ epoch: 1169 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.012 | time: 0:52:30.6 | step: 3510
358
+ epoch: 1173 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.016 | time: 0:52:39.7 | step: 3520
359
+ epoch: 1176 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.013 | time: 0:52:48.7 | step: 3530
360
+ epoch: 1179 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.017 | time: 0:52:57.5 | step: 3540
361
+ epoch: 1183 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.015 | time: 0:53:06.6 | step: 3550
362
+ epoch: 1186 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.021 | time: 0:53:15.6 | step: 3560
363
+ epoch: 1189 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.006 | time: 0:53:24.4 | step: 3570
364
+ epoch: 1193 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.007 | time: 0:53:33.5 | step: 3580
365
+ epoch: 1196 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.015 | time: 0:53:42.5 | step: 3590
366
+ epoch: 1199 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.008 | time: 0:53:51.2 | step: 3600
367
+ epoch: 1203 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.030 | time: 0:54:00.3 | step: 3610
368
+ epoch: 1206 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.007 | time: 0:54:09.3 | step: 3620
369
+ epoch: 1209 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.011 | time: 0:54:18.0 | step: 3630
370
+ epoch: 1213 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.008 | time: 0:54:27.1 | step: 3640
371
+ epoch: 1216 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.027 | time: 0:54:36.1 | step: 3650
372
+ epoch: 1219 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.022 | time: 0:54:44.8 | step: 3660
373
+ epoch: 1223 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.004 | time: 0:54:53.9 | step: 3670
374
+ epoch: 1226 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.005 | time: 0:55:02.9 | step: 3680
375
+ epoch: 1229 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.034 | time: 0:55:11.6 | step: 3690
376
+ epoch: 1233 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.009 | time: 0:55:20.7 | step: 3700
377
+ epoch: 1236 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.029 | time: 0:55:29.6 | step: 3710
378
+ epoch: 1239 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.010 | time: 0:55:38.4 | step: 3720
379
+ epoch: 1243 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.013 | time: 0:55:47.5 | step: 3730
380
+ epoch: 1246 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.010 | time: 0:55:56.5 | step: 3740
381
+ epoch: 1249 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.003 | time: 0:56:05.2 | step: 3750
382
+ epoch: 1253 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.009 | time: 0:56:14.3 | step: 3760
383
+ epoch: 1256 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.022 | time: 0:56:23.3 | step: 3770
384
+ epoch: 1259 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.008 | time: 0:56:32.1 | step: 3780
385
+ epoch: 1263 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.033 | time: 0:56:41.1 | step: 3790
386
+ epoch: 1266 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.020 | time: 0:56:50.1 | step: 3800
387
+ epoch: 1269 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.011 | time: 0:56:58.9 | step: 3810
388
+ epoch: 1273 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.012 | time: 0:57:08.0 | step: 3820
389
+ epoch: 1276 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.020 | time: 0:57:17.0 | step: 3830
390
+ epoch: 1279 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.007 | time: 0:57:25.8 | step: 3840
391
+ epoch: 1283 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.018 | time: 0:57:34.9 | step: 3850
392
+ epoch: 1286 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.043 | time: 0:57:43.9 | step: 3860
393
+ epoch: 1289 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.023 | time: 0:57:52.6 | step: 3870
394
+ epoch: 1293 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.008 | time: 0:58:01.7 | step: 3880
395
+ epoch: 1296 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.011 | time: 0:58:10.7 | step: 3890
396
+ epoch: 1299 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.024 | time: 0:58:19.5 | step: 3900
397
+ epoch: 1303 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.003 | time: 0:58:28.5 | step: 3910
398
+ epoch: 1306 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.016 | time: 0:58:37.5 | step: 3920
399
+ epoch: 1309 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.008 | time: 0:58:46.2 | step: 3930
400
+ epoch: 1313 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.034 | time: 0:58:55.3 | step: 3940
401
+ epoch: 1316 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.011 | time: 0:59:04.3 | step: 3950
402
+ epoch: 1319 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.008 | time: 0:59:13.1 | step: 3960
403
+ epoch: 1323 | 0/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.023 | time: 0:59:22.1 | step: 3970
404
+ epoch: 1326 | 1/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.015 | time: 0:59:31.1 | step: 3980
405
+ epoch: 1329 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.016 | time: 0:59:39.8 | step: 3990
406
+ epoch: 1333 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.008 | time: 0:59:48.9 | step: 4000
407
+ --- <validation> ---
408
+ loss: 0.026.
409
+ epoch: 1336 | 1/ 3 | logs/44k/diffusion | batch/s: 0.41 | lr: 0.0001 | loss: 0.017 | time: 1:00:13.3 | step: 4010
410
+ epoch: 1339 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.036 | time: 1:00:22.1 | step: 4020
411
+ epoch: 1343 | 0/ 3 | logs/44k/diffusion | batch/s: 1.10 | lr: 0.0001 | loss: 0.019 | time: 1:00:31.4 | step: 4030
412
+ epoch: 1346 | 1/ 3 | logs/44k/diffusion | batch/s: 1.09 | lr: 0.0001 | loss: 0.013 | time: 1:00:40.6 | step: 4040
413
+ epoch: 1349 | 2/ 3 | logs/44k/diffusion | batch/s: 1.11 | lr: 0.0001 | loss: 0.024 | time: 1:00:49.4 | step: 4050
414
+ epoch: 1353 | 0/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.009 | time: 1:00:58.5 | step: 4060
415
+ epoch: 1356 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.009 | time: 1:01:07.4 | step: 4070
416
+ epoch: 1359 | 2/ 3 | logs/44k/diffusion | batch/s: 1.13 | lr: 0.0001 | loss: 0.019 | time: 1:01:16.1 | step: 4080
417
+ epoch: 1363 | 0/ 3 | logs/44k/diffusion | batch/s: 1.14 | lr: 0.0001 | loss: 0.006 | time: 1:01:25.0 | step: 4090
418
+ epoch: 1366 | 1/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.008 | time: 1:01:33.9 | step: 4100
419
+ epoch: 1369 | 2/ 3 | logs/44k/diffusion | batch/s: 1.12 | lr: 0.0001 | loss: 0.024 | time: 1:01:42.7 | step: 4110
furry/baobai/baobai8/logs/44k/diffusion/logs/events.out.tfevents.1691855425.36ffdf771304.34252.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c707090a28194f6886b1e49b31298bba70b00cb42dd5ed13c7e19d885a4a9c7c
3
+ size 6315480
furry/baobai/baobai8/logs/44k/diffusion/model_0.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:409452a27ab310f7a5897844d003d372a7357cc91c4a43562584a1714518cdf9
3
+ size 220895384
furry/baobai/baobai8/logs/44k/diffusion/model_4000.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8399f16a3c03a630a45e1734ce0ff98efb5d0fe30fdeb5e7a8d0da0fcfe42266
3
+ size 220893574
furry/baobai/baobai8/logs/44k/eval/events.out.tfevents.1691849579.36ffdf771304.6041.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1122ec17330af884053f26078f2c3dcab2a75817d480a7ec67fee88b54361a6
3
+ size 7425360
furry/baobai/baobai8/logs/44k/eval/events.out.tfevents.1691853899.36ffdf771304.26662.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cf540c0ccc31a805ee0f9224187dbfdd43e0c716117a5ac52b6a1f59f194ea0
3
+ size 88
furry/baobai/baobai8/logs/44k/eval/events.out.tfevents.1691853956.36ffdf771304.26984.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c4cd2d11b73a66c8dc094767e2ed00628b1ee7723d89184599c7d9bdb2ecfeb
3
+ size 2475399
furry/baobai/baobai8/logs/44k/events.out.tfevents.1691849579.36ffdf771304.6041.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00ed98e2526ae42a387bcdead73530d6eaff1e5a0922f68626b619cdc7ce2c34
3
+ size 2500731
furry/baobai/baobai8/logs/44k/events.out.tfevents.1691853899.36ffdf771304.26662.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d543f1e33880d8e29996b9545f63a51ddb6cce05ab1957546da6d6133b9b73d
3
+ size 88
furry/baobai/baobai8/logs/44k/events.out.tfevents.1691853956.36ffdf771304.26984.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59ef79445d2c5531e87b8986b2dd785c2b23d3b2dd7d3d78c27fc25573292cbe
3
+ size 754229
furry/baobai/baobai8/logs/44k/githash ADDED
@@ -0,0 +1 @@
 
 
1
+ 64591bd664b1d4ffe88013fd2a7b1271109d7fd9
furry/baobai/baobai8/logs/44k/release.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ba16e044a164edecc068809fb5cbdae7e65bf5b7f84e891fe71c7595cf43340
3
+ size 160935409
furry/baobai/baobai8/logs/44k/train.log ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-08-12 14:12:59,351 44k INFO {'train': {'log_interval': 200, 'eval_interval': 800, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'half_type': 'fp16', 'lr_decay': 0.999875, 'segment_size': 10240, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 512, 'port': '8001', 'keep_ckpts': 3, 'all_in_mem': False, 'vol_aug': False}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 44100, 'filter_length': 2048, 'hop_length': 512, 'win_length': 2048, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': 22050, 'unit_interpolate_mode': 'nearest'}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4, 4], 'n_layers_q': 3, 'n_layers_trans_flow': 3, 'n_flow_layer': 4, 'use_spectral_norm': False, 'gin_channels': 768, 'ssl_dim': 768, 'n_speakers': 1, 'vocoder_name': 'nsf-hifigan', 'speech_encoder': 'vec768l12', 'speaker_embedding': False, 'vol_embedding': False, 'use_depthwise_conv': False, 'flow_share_parameter': False, 'use_automatic_f0_prediction': True, 'use_transformer_flow': False}, 'spk': {'bw': 0}, 'model_dir': './logs/44k'}
2
+ 2023-08-12 14:13:09,645 44k INFO emb_g.weight is not in the checkpoint
3
+ 2023-08-12 14:13:09,799 44k INFO Loaded checkpoint './logs/44k/G_0.pth' (iteration 0)
4
+ 2023-08-12 14:13:13,003 44k INFO Loaded checkpoint './logs/44k/D_0.pth' (iteration 0)
5
+ 2023-08-12 14:14:25,263 44k INFO ====> Epoch: 1, cost 85.92 s
6
+ 2023-08-12 14:15:02,466 44k INFO ====> Epoch: 2, cost 37.20 s
7
+ 2023-08-12 14:15:36,750 44k INFO ====> Epoch: 3, cost 34.28 s
8
+ 2023-08-12 14:16:11,944 44k INFO ====> Epoch: 4, cost 35.19 s
9
+ 2023-08-12 14:16:52,122 44k INFO ====> Epoch: 5, cost 40.18 s
10
+ 2023-08-12 14:17:27,963 44k INFO ====> Epoch: 6, cost 35.84 s
11
+ 2023-08-12 14:18:01,369 44k INFO ====> Epoch: 7, cost 33.41 s
12
+ 2023-08-12 14:18:38,567 44k INFO ====> Epoch: 8, cost 37.20 s
13
+ 2023-08-12 14:19:06,841 44k INFO Train Epoch: 9 [65%]
14
+ 2023-08-12 14:19:06,842 44k INFO Losses: [2.372133255004883, 3.0521934032440186, 18.344472885131836, 21.735246658325195, 1.1796915531158447], step: 200, lr: 9.990004373906418e-05, reference_loss: 46.68373489379883
15
+ 2023-08-12 14:19:16,793 44k INFO ====> Epoch: 9, cost 38.23 s
16
+ 2023-08-12 14:19:52,384 44k INFO ====> Epoch: 10, cost 35.59 s
17
+ 2023-08-12 14:20:29,551 44k INFO ====> Epoch: 11, cost 37.17 s
18
+ 2023-08-12 14:21:06,450 44k INFO ====> Epoch: 12, cost 36.90 s
19
+ 2023-08-12 14:21:40,430 44k INFO ====> Epoch: 13, cost 33.98 s
20
+ 2023-08-12 14:22:15,681 44k INFO ====> Epoch: 14, cost 35.25 s
21
+ 2023-08-12 14:22:53,070 44k INFO ====> Epoch: 15, cost 37.39 s
22
+ 2023-08-12 14:23:30,143 44k INFO ====> Epoch: 16, cost 37.07 s
23
+ 2023-08-12 14:24:04,880 44k INFO ====> Epoch: 17, cost 34.74 s
24
+ 2023-08-12 14:24:27,523 44k INFO Train Epoch: 18 [35%]
25
+ 2023-08-12 14:24:27,528 44k INFO Losses: [2.4882853031158447, 2.6926639080047607, 14.925048828125, 18.37120246887207, 0.6845868825912476], step: 400, lr: 9.978771236724554e-05, reference_loss: 39.16178894042969
26
+ 2023-08-12 14:24:44,107 44k INFO ====> Epoch: 18, cost 39.23 s
27
+ 2023-08-12 14:25:20,817 44k INFO ====> Epoch: 19, cost 36.71 s
28
+ 2023-08-12 14:25:54,695 44k INFO ====> Epoch: 20, cost 33.88 s
29
+ 2023-08-12 14:26:29,955 44k INFO ====> Epoch: 21, cost 35.26 s
30
+ 2023-08-12 14:27:10,847 44k INFO ====> Epoch: 22, cost 40.89 s
31
+ 2023-08-12 14:27:44,257 44k INFO ====> Epoch: 23, cost 33.41 s
32
+ 2023-08-12 14:28:20,492 44k INFO ====> Epoch: 24, cost 36.24 s
33
+ 2023-08-12 14:28:57,507 44k INFO ====> Epoch: 25, cost 37.01 s
34
+ 2023-08-12 14:29:32,176 44k INFO ====> Epoch: 26, cost 34.67 s
35
+ 2023-08-12 14:29:44,568 44k INFO Train Epoch: 27 [4%]
36
+ 2023-08-12 14:29:44,574 44k INFO Losses: [2.3930883407592773, 2.7095766067504883, 13.353201866149902, 19.138076782226562, 0.898830235004425], step: 600, lr: 9.967550730505221e-05, reference_loss: 38.492774963378906
37
+ 2023-08-12 14:30:06,893 44k INFO ====> Epoch: 27, cost 34.72 s
38
+ 2023-08-12 14:30:48,861 44k INFO ====> Epoch: 28, cost 41.97 s
39
+ 2023-08-12 14:31:22,732 44k INFO ====> Epoch: 29, cost 33.87 s
40
+ 2023-08-12 14:31:58,042 44k INFO ====> Epoch: 30, cost 35.31 s
41
+ 2023-08-12 14:32:35,195 44k INFO ====> Epoch: 31, cost 37.15 s
42
+ 2023-08-12 14:33:10,938 44k INFO ====> Epoch: 32, cost 35.74 s
43
+ 2023-08-12 14:33:44,087 44k INFO ====> Epoch: 33, cost 33.15 s
44
+ 2023-08-12 14:34:24,390 44k INFO ====> Epoch: 34, cost 40.30 s
45
+ 2023-08-12 14:34:53,364 44k INFO Train Epoch: 35 [74%]
46
+ 2023-08-12 14:34:53,365 44k INFO Losses: [2.2506444454193115, 2.408331871032715, 15.175576210021973, 17.956342697143555, 0.93328458070755], step: 800, lr: 9.957587539488128e-05, reference_loss: 38.724178314208984
47
+ 2023-08-12 14:35:11,608 44k INFO Saving model and optimizer state at iteration 35 to ./logs/44k/G_800.pth
48
+ 2023-08-12 14:35:16,681 44k INFO Saving model and optimizer state at iteration 35 to ./logs/44k/D_800.pth
49
+ 2023-08-12 14:35:29,850 44k INFO ====> Epoch: 35, cost 65.46 s
50
+ 2023-08-12 14:36:09,398 44k INFO ====> Epoch: 36, cost 39.55 s
51
+ 2023-08-12 14:36:45,977 44k INFO ====> Epoch: 37, cost 36.58 s
52
+ 2023-08-12 14:37:19,513 44k INFO ====> Epoch: 38, cost 33.54 s
53
+ 2023-08-12 14:37:58,591 44k INFO ====> Epoch: 39, cost 39.08 s
54
+ 2023-08-12 14:38:35,915 44k INFO ====> Epoch: 40, cost 37.32 s
55
+ 2023-08-12 14:39:12,428 44k INFO ====> Epoch: 41, cost 36.51 s
56
+ 2023-08-12 14:39:46,127 44k INFO ====> Epoch: 42, cost 33.70 s
57
+ 2023-08-12 14:40:21,465 44k INFO ====> Epoch: 43, cost 35.34 s
58
+ 2023-08-12 14:40:45,653 44k INFO Train Epoch: 44 [43%]
59
+ 2023-08-12 14:40:45,654 44k INFO Losses: [2.5418283939361572, 2.2850289344787598, 9.427962303161621, 16.608245849609375, 1.106669306755066], step: 1000, lr: 9.94639085301583e-05, reference_loss: 31.96973419189453
60
+ 2023-08-12 14:41:00,529 44k INFO ====> Epoch: 44, cost 39.06 s
61
+ 2023-08-12 14:41:38,669 44k INFO ====> Epoch: 45, cost 38.14 s
62
+ 2023-08-12 14:42:13,492 44k INFO ====> Epoch: 46, cost 34.82 s
63
+ 2023-08-12 14:42:51,075 44k INFO ====> Epoch: 47, cost 37.58 s
64
+ 2023-08-12 14:43:27,453 44k INFO ====> Epoch: 48, cost 36.38 s
65
+ 2023-08-12 14:44:00,818 44k INFO ====> Epoch: 49, cost 33.37 s
66
+ 2023-08-12 14:44:36,858 44k INFO ====> Epoch: 50, cost 36.04 s
67
+ 2023-08-12 14:45:15,420 44k INFO ====> Epoch: 51, cost 38.56 s
68
+ 2023-08-12 14:45:49,195 44k INFO ====> Epoch: 52, cost 33.78 s
69
+ 2023-08-12 14:46:04,601 44k INFO Train Epoch: 53 [13%]
70
+ 2023-08-12 14:46:04,605 44k INFO Losses: [2.4839749336242676, 2.531289577484131, 12.578356742858887, 17.232927322387695, 0.9754498600959778], step: 1200, lr: 9.935206756519513e-05, reference_loss: 35.80199432373047
71
+ 2023-08-12 14:46:25,417 44k INFO ====> Epoch: 53, cost 36.22 s
72
+ 2023-08-12 14:47:02,660 44k INFO ====> Epoch: 54, cost 37.24 s
73
+ 2023-08-12 14:47:38,649 44k INFO ====> Epoch: 55, cost 35.99 s
74
+ 2023-08-12 14:48:12,289 44k INFO ====> Epoch: 56, cost 33.64 s
75
+ 2023-08-12 14:48:50,227 44k INFO ====> Epoch: 57, cost 37.94 s
76
+ 2023-08-12 14:49:24,133 44k INFO ====> Epoch: 58, cost 33.91 s
77
+ 2023-08-12 14:49:58,859 44k INFO ====> Epoch: 59, cost 34.73 s
78
+ 2023-08-12 14:50:35,992 44k INFO ====> Epoch: 60, cost 37.13 s
79
+ 2023-08-12 14:51:06,730 44k INFO Train Epoch: 61 [83%]
80
+ 2023-08-12 14:51:06,732 44k INFO Losses: [2.293588638305664, 3.138998508453369, 12.667041778564453, 19.142377853393555, 0.6848804950714111], step: 1400, lr: 9.92527589532945e-05, reference_loss: 37.926883697509766
81
+ 2023-08-12 14:51:13,846 44k INFO ====> Epoch: 61, cost 37.85 s
82
+ 2023-08-12 14:51:47,523 44k INFO ====> Epoch: 62, cost 33.68 s
83
+ 2023-08-12 14:52:25,120 44k INFO ====> Epoch: 63, cost 37.60 s
84
+ 2023-08-12 14:53:05,084 44k INFO ====> Epoch: 64, cost 39.96 s
85
+ 2023-08-12 14:53:41,127 44k INFO ====> Epoch: 65, cost 36.04 s
86
+ 2023-08-12 14:54:14,409 44k INFO ====> Epoch: 66, cost 33.28 s
87
+ 2023-08-12 14:54:51,735 44k INFO ====> Epoch: 67, cost 37.33 s
88
+ 2023-08-12 14:55:28,906 44k INFO ====> Epoch: 68, cost 37.17 s
89
+ 2023-08-12 14:56:02,743 44k INFO ====> Epoch: 69, cost 33.84 s
90
+ 2023-08-12 14:56:31,299 44k INFO Train Epoch: 70 [52%]
91
+ 2023-08-12 14:56:31,304 44k INFO Losses: [2.3966827392578125, 2.455382823944092, 11.905396461486816, 17.858034133911133, 0.5615662932395935], step: 1600, lr: 9.914115541286833e-05, reference_loss: 35.177059173583984
92
+ 2023-08-12 14:56:40,247 44k INFO Saving model and optimizer state at iteration 70 to ./logs/44k/G_1600.pth
93
+ 2023-08-12 14:56:47,725 44k INFO Saving model and optimizer state at iteration 70 to ./logs/44k/D_1600.pth
94
+ 2023-08-12 14:57:08,259 44k INFO ====> Epoch: 70, cost 65.52 s
95
+ 2023-08-12 14:57:45,710 44k INFO ====> Epoch: 71, cost 37.45 s
96
+ 2023-08-12 14:58:22,380 44k INFO ====> Epoch: 72, cost 36.67 s
97
+ 2023-08-12 14:59:00,386 44k INFO ====> Epoch: 73, cost 38.01 s
98
+ 2023-08-12 14:59:36,658 44k INFO ====> Epoch: 74, cost 36.27 s
99
+ 2023-08-12 15:00:11,733 44k INFO ====> Epoch: 75, cost 35.07 s
100
+ 2023-08-12 15:00:51,646 44k INFO ====> Epoch: 76, cost 39.91 s
101
+ 2023-08-12 15:01:27,396 44k INFO ====> Epoch: 77, cost 35.75 s
102
+ 2023-08-12 15:02:01,287 44k INFO ====> Epoch: 78, cost 33.89 s
103
+ 2023-08-12 15:02:20,467 44k INFO Train Epoch: 79 [22%]
104
+ 2023-08-12 15:02:20,471 44k INFO Losses: [2.426839828491211, 2.590867757797241, 12.20749282836914, 17.734094619750977, 0.8622822761535645], step: 1800, lr: 9.902967736366644e-05, reference_loss: 35.82157897949219
105
+ 2023-08-12 15:02:39,280 44k INFO ====> Epoch: 79, cost 37.99 s
106
+ 2023-08-12 15:03:16,700 44k INFO ====> Epoch: 80, cost 37.42 s
107
+ 2023-08-12 15:03:51,804 44k INFO ====> Epoch: 81, cost 35.10 s
108
+ 2023-08-12 15:04:27,221 44k INFO ====> Epoch: 82, cost 35.42 s
109
+ 2023-08-12 15:05:04,425 44k INFO ====> Epoch: 83, cost 37.20 s
110
+ 2023-08-12 15:05:38,460 44k INFO ====> Epoch: 84, cost 34.03 s
111
+ 2023-08-12 15:06:13,645 44k INFO ====> Epoch: 85, cost 35.19 s
112
+ 2023-08-12 15:06:51,307 44k INFO ====> Epoch: 86, cost 37.66 s
113
+ 2023-08-12 15:07:24,049 44k INFO Train Epoch: 87 [91%]
114
+ 2023-08-12 15:07:24,050 44k INFO Losses: [2.5474557876586914, 2.4764974117279053, 9.042988777160645, 16.563535690307617, 0.7708569169044495], step: 2000, lr: 9.89306910009569e-05, reference_loss: 31.401334762573242
115
+ 2023-08-12 15:07:29,232 44k INFO ====> Epoch: 87, cost 37.92 s
116
+ 2023-08-12 15:08:03,078 44k INFO ====> Epoch: 88, cost 33.85 s
117
+ 2023-08-12 15:08:43,647 44k INFO ====> Epoch: 89, cost 40.57 s
118
+ 2023-08-12 15:09:21,409 44k INFO ====> Epoch: 90, cost 37.76 s
119
+ 2023-08-12 15:09:57,549 44k INFO ====> Epoch: 91, cost 36.14 s
120
+ 2023-08-12 15:10:31,436 44k INFO ====> Epoch: 92, cost 33.89 s
121
+ 2023-08-12 15:11:08,255 44k INFO ====> Epoch: 93, cost 36.82 s
122
+ 2023-08-12 15:11:44,964 44k INFO ====> Epoch: 94, cost 36.71 s
123
+ 2023-08-12 15:12:19,894 44k INFO ====> Epoch: 95, cost 34.93 s
124
+ 2023-08-12 15:12:48,148 44k INFO Train Epoch: 96 [61%]
125
+ 2023-08-12 15:12:48,150 44k INFO Losses: [2.494248867034912, 2.565378427505493, 12.230314254760742, 18.448312759399414, 0.7265467643737793], step: 2200, lr: 9.881944960586671e-05, reference_loss: 36.46480178833008
126
+ 2023-08-12 15:12:58,766 44k INFO ====> Epoch: 96, cost 38.87 s
127
+ 2023-08-12 15:13:35,063 44k INFO ====> Epoch: 97, cost 36.30 s
128
+ 2023-08-12 15:14:09,135 44k INFO ====> Epoch: 98, cost 34.07 s
129
+ 2023-08-12 15:14:45,833 44k INFO ====> Epoch: 99, cost 36.70 s
130
+ 2023-08-12 15:15:23,021 44k INFO ====> Epoch: 100, cost 37.19 s
131
+ 2023-08-12 15:15:58,031 44k INFO ====> Epoch: 101, cost 35.01 s
132
+ 2023-08-12 15:16:38,805 44k INFO ====> Epoch: 102, cost 40.77 s
133
+ 2023-08-12 15:17:15,538 44k INFO ====> Epoch: 103, cost 36.73 s
134
+ 2023-08-12 15:17:52,688 44k INFO ====> Epoch: 104, cost 37.15 s
135
+ 2023-08-12 15:18:10,460 44k INFO Train Epoch: 105 [30%]
136
+ 2023-08-12 15:18:10,462 44k INFO Losses: [1.9893114566802979, 3.161811351776123, 13.067861557006836, 16.837371826171875, 0.933455765247345], step: 2400, lr: 9.870833329479095e-05, reference_loss: 35.98981475830078
137
+ 2023-08-12 15:18:19,247 44k INFO Saving model and optimizer state at iteration 105 to ./logs/44k/G_2400.pth
138
+ 2023-08-12 15:18:23,095 44k INFO Saving model and optimizer state at iteration 105 to ./logs/44k/D_2400.pth
139
+ 2023-08-12 15:18:47,304 44k INFO ====> Epoch: 105, cost 54.62 s
140
+ 2023-08-12 15:19:23,764 44k INFO ====> Epoch: 106, cost 36.46 s
141
+ 2023-08-12 15:20:01,145 44k INFO ====> Epoch: 107, cost 37.38 s
142
+ 2023-08-12 15:20:40,672 44k INFO ====> Epoch: 108, cost 39.53 s
143
+ 2023-08-12 15:21:16,108 44k INFO ====> Epoch: 109, cost 35.44 s
144
+ 2023-08-12 15:21:53,532 44k INFO ====> Epoch: 110, cost 37.42 s
145
+ 2023-08-12 15:22:30,382 44k INFO ====> Epoch: 111, cost 36.85 s
146
+ 2023-08-12 15:23:03,620 44k INFO ====> Epoch: 112, cost 33.24 s
147
+ 2023-08-12 15:23:39,979 44k INFO ====> Epoch: 113, cost 36.36 s
148
+ 2023-08-12 15:23:54,327 44k INFO Train Epoch: 114 [0%]
149
+ 2023-08-12 15:23:54,328 44k INFO Losses: [2.137906551361084, 3.1954293251037598, 15.614903450012207, 18.090456008911133, 0.9798715710639954], step: 2600, lr: 9.859734192708044e-05, reference_loss: 40.0185661315918
150
+ 2023-08-12 15:24:19,021 44k INFO ====> Epoch: 114, cost 39.04 s
151
+ 2023-08-12 15:24:59,372 44k INFO {'train': {'log_interval': 200, 'eval_interval': 800, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'half_type': 'fp16', 'lr_decay': 0.999875, 'segment_size': 10240, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 512, 'port': '8001', 'keep_ckpts': 3, 'all_in_mem': False, 'vol_aug': False}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 44100, 'filter_length': 2048, 'hop_length': 512, 'win_length': 2048, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': 22050, 'unit_interpolate_mode': 'nearest'}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4, 4], 'n_layers_q': 3, 'n_layers_trans_flow': 3, 'n_flow_layer': 4, 'use_spectral_norm': False, 'gin_channels': 768, 'ssl_dim': 768, 'n_speakers': 1, 'vocoder_name': 'nsf-hifigan', 'speech_encoder': 'vec768l12', 'speaker_embedding': False, 'vol_embedding': False, 'use_depthwise_conv': False, 'flow_share_parameter': False, 'use_automatic_f0_prediction': True, 'use_transformer_flow': False}, 'spk': {'bw': 0}, 'model_dir': './logs/44k'}
152
+ 2023-08-12 15:25:11,216 44k INFO Loaded checkpoint './logs/44k/G_2400.pth' (iteration 105)
153
+ 2023-08-12 15:25:14,744 44k INFO Loaded checkpoint './logs/44k/D_2400.pth' (iteration 105)
154
+ 2023-08-12 15:25:56,333 44k INFO {'train': {'log_interval': 200, 'eval_interval': 800, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'half_type': 'fp16', 'lr_decay': 0.999875, 'segment_size': 10240, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 512, 'port': '8001', 'keep_ckpts': 3, 'all_in_mem': False, 'vol_aug': False}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 44100, 'filter_length': 2048, 'hop_length': 512, 'win_length': 2048, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': 22050, 'unit_interpolate_mode': 'nearest'}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4, 4], 'n_layers_q': 3, 'n_layers_trans_flow': 3, 'n_flow_layer': 4, 'use_spectral_norm': False, 'gin_channels': 768, 'ssl_dim': 768, 'n_speakers': 1, 'vocoder_name': 'nsf-hifigan', 'speech_encoder': 'vec768l12', 'speaker_embedding': False, 'vol_embedding': False, 'use_depthwise_conv': False, 'flow_share_parameter': False, 'use_automatic_f0_prediction': True, 'use_transformer_flow': False}, 'spk': {'bw': 0}, 'model_dir': './logs/44k'}
155
+ 2023-08-12 15:26:10,033 44k INFO Loaded checkpoint './logs/44k/G_2400.pth' (iteration 105)
156
+ 2023-08-12 15:26:14,447 44k INFO Loaded checkpoint './logs/44k/D_2400.pth' (iteration 105)
157
+ 2023-08-12 15:27:19,033 44k INFO ====> Epoch: 105, cost 82.70 s
158
+ 2023-08-12 15:27:55,587 44k INFO ====> Epoch: 106, cost 36.55 s
159
+ 2023-08-12 15:28:35,076 44k INFO ====> Epoch: 107, cost 39.49 s
160
+ 2023-08-12 15:29:15,293 44k INFO ====> Epoch: 108, cost 40.22 s
161
+ 2023-08-12 15:29:51,732 44k INFO ====> Epoch: 109, cost 36.44 s
162
+ 2023-08-12 15:30:25,505 44k INFO ====> Epoch: 110, cost 33.77 s
163
+ 2023-08-12 15:31:02,260 44k INFO ====> Epoch: 111, cost 36.76 s
164
+ 2023-08-12 15:31:39,869 44k INFO ====> Epoch: 112, cost 37.61 s
165
+ 2023-08-12 15:32:05,570 44k INFO Train Epoch: 113 [65%]
166
+ 2023-08-12 15:32:05,574 44k INFO Losses: [2.193831205368042, 2.7961835861206055, 18.21563148498535, 18.30766487121582, 0.8750658631324768], step: 2600, lr: 9.859734192708044e-05, reference_loss: 42.38837814331055
167
+ 2023-08-12 15:32:16,136 44k INFO ====> Epoch: 113, cost 36.27 s
168
+ 2023-08-12 15:32:50,224 44k INFO ====> Epoch: 114, cost 34.09 s
169
+ 2023-08-12 15:33:30,370 44k INFO ====> Epoch: 115, cost 40.15 s
170
+ 2023-08-12 15:34:07,652 44k INFO ====> Epoch: 116, cost 37.28 s
171
+ 2023-08-12 15:34:42,869 44k INFO ====> Epoch: 117, cost 35.22 s
172
+ 2023-08-12 15:35:16,860 44k INFO ====> Epoch: 118, cost 33.99 s
173
+ 2023-08-12 15:35:54,244 44k INFO ====> Epoch: 119, cost 37.38 s
174
+ 2023-08-12 15:36:31,215 44k INFO ====> Epoch: 120, cost 36.97 s
175
+ 2023-08-12 15:37:05,169 44k INFO ====> Epoch: 121, cost 33.95 s
176
+ 2023-08-12 15:37:25,404 44k INFO Train Epoch: 122 [35%]
177
+ 2023-08-12 15:37:25,406 44k INFO Losses: [2.194392681121826, 2.90118408203125, 15.34102725982666, 17.628496170043945, 0.257029265165329], step: 2800, lr: 9.848647536224416e-05, reference_loss: 38.3221321105957
178
+ 2023-08-12 15:37:42,256 44k INFO ====> Epoch: 122, cost 37.09 s
179
+ 2023-08-12 15:38:23,889 44k INFO ====> Epoch: 123, cost 41.63 s
180
+ 2023-08-12 15:38:57,726 44k INFO ====> Epoch: 124, cost 33.84 s
181
+ 2023-08-12 15:39:32,879 44k INFO ====> Epoch: 125, cost 35.15 s
182
+ 2023-08-12 15:40:10,244 44k INFO ====> Epoch: 126, cost 37.37 s
183
+ 2023-08-12 15:40:46,427 44k INFO ====> Epoch: 127, cost 36.18 s
184
+ 2023-08-12 15:41:19,929 44k INFO ====> Epoch: 128, cost 33.50 s
185
+ 2023-08-12 15:41:55,935 44k INFO ====> Epoch: 129, cost 36.01 s
186
+ 2023-08-12 15:42:33,149 44k INFO ====> Epoch: 130, cost 37.21 s
187
+ 2023-08-12 15:42:51,078 44k INFO Train Epoch: 131 [4%]
188
+ 2023-08-12 15:42:51,080 44k INFO Losses: [2.092893362045288, 3.3098762035369873, 13.390396118164062, 17.548063278198242, 0.6698232889175415], step: 3000, lr: 9.837573345994909e-05, reference_loss: 37.011051177978516
189
+ 2023-08-12 15:43:15,768 44k INFO ====> Epoch: 131, cost 42.62 s
190
+ 2023-08-12 15:43:49,700 44k INFO ====> Epoch: 132, cost 33.93 s
191
+ 2023-08-12 15:44:24,757 44k INFO ====> Epoch: 133, cost 35.06 s
192
+ 2023-08-12 15:45:02,106 44k INFO ====> Epoch: 134, cost 37.35 s
193
+ 2023-08-12 15:45:38,325 44k INFO ====> Epoch: 135, cost 36.22 s
194
+ 2023-08-12 15:46:12,727 44k INFO ====> Epoch: 136, cost 34.40 s
195
+ 2023-08-12 15:46:49,288 44k INFO ====> Epoch: 137, cost 36.56 s
196
+ 2023-08-12 15:47:26,467 44k INFO ====> Epoch: 138, cost 37.18 s
197
+ 2023-08-12 15:47:59,335 44k INFO Train Epoch: 139 [74%]
198
+ 2023-08-12 15:47:59,338 44k INFO Losses: [2.0553226470947266, 2.708265781402588, 14.970947265625, 16.92167091369629, 0.7960343956947327], step: 3200, lr: 9.827740075511432e-05, reference_loss: 37.452239990234375
199
+ 2023-08-12 15:48:19,095 44k INFO Saving model and optimizer state at iteration 139 to ./logs/44k/G_3200.pth
200
+ 2023-08-12 15:48:23,978 44k INFO Saving model and optimizer state at iteration 139 to ./logs/44k/D_3200.pth
201
+ 2023-08-12 15:48:30,851 44k INFO .. Free up space by deleting ckpt ./logs/44k/G_800.pth
202
+ 2023-08-12 15:48:30,853 44k INFO .. Free up space by deleting ckpt ./logs/44k/D_800.pth
203
+ 2023-08-12 15:48:37,139 44k INFO ====> Epoch: 139, cost 70.67 s
furry/baobai/baobai8/raw/再见深海n1.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bad25db92487264eb8588d581da68390aaee55e8cba3e21da1cec6487fb4739
3
+ size 20718462
furry/baobai/baobai8/raw/再见深海n2.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01356b55d11d7825091cca820ed3f38b69ea2b3f8bc042110a3ea9b804d19359
3
+ size 20718462
furry/baobai/baobai8/results/再见深海n1.wav_0key_bw_sovits_crepe.flac ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64246fe9eedee92eaf9aa05e34aa805ca3296bd0ec8cfc9c44d496810c90d862
3
+ size 8804631
furry/baobai/baobai8/results/再见深海n1.wav_0key_bw_sovits_dio.flac ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91676cc3bdcfbf4e9c86430be3132e2b0c9b64e5ae36a19dffe9b21bcb91b632
3
+ size 8819438
furry/baobai/baobai8/results/再见深海n1.wav_0key_bw_sovits_fcpe.flac ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71f750fd8d8b089b1a7cb0326bb7bdc845a2f6990bf4ba95fdd16204f0d578f8
3
+ size 8805613
furry/baobai/baobai8/results/再见深海n1.wav_0key_bw_sovits_rmvpe.flac ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28af97e4f97c2c56604ac0adffe2be01610b005a3166ee74dee1990880125c84
3
+ size 8843319