import os import datasets import numpy as np import pandas as pd from .bigbiohub import text_features from .bigbiohub import kb_features from .bigbiohub import BigBioConfig from .bigbiohub import Tasks _LANGUAGES = ['French'] _PUBMED = False _LOCAL = True _CITATION = """\ @misc{dalloux, title={Datasets – Clément Dalloux}, url={http://clementdalloux.fr/?page_id=28}, journal={Clément Dalloux}, author={Dalloux, Clément}} """ _DATASETNAME = "essai" _DISPLAYNAME = "ESSAI" _DESCRIPTION = """\ We manually annotated two corpora from the biomedical field. The ESSAI corpus \ contains clinical trial protocols in French. They were mainly obtained from the \ National Cancer Institute The typical protocol consists of two parts: the \ summary of the trial, which indicates the purpose of the trial and the methods \ applied; and a detailed description of the trial with the inclusion and \ exclusion criteria. The CAS corpus contains clinical cases published in \ scientific literature and training material. They are published in different \ journals from French-speaking countries (France, Belgium, Switzerland, Canada, \ African countries, tropical countries) and are related to various medical \ specialties (cardiology, urology, oncology, obstetrics, pulmonology, \ gastro-enterology). The purpose of clinical cases is to describe clinical \ situations of patients. Hence, their content is close to the content of clinical \ narratives (description of diagnoses, treatments or procedures, evolution, \ family history, expected audience, etc.). In clinical cases, the negation is \ frequently used for describing the patient signs, symptoms, and diagnosis. \ Speculation is present as well but less frequently. This version only contain the annotated ESSAI corpus """ _HOMEPAGE = "https://clementdalloux.fr/?page_id=28" _LICENSE = 'Data User Agreement' _URLS = { "essai_source": "", "essai_bigbio_text": "", "essai_bigbio_kb": "", } _SOURCE_VERSION = "1.0.0" _BIGBIO_VERSION = "1.0.0" _SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION] class ESSAI(datasets.GeneratorBasedBuilder): SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) DEFAULT_CONFIG_NAME = "essai_source" BUILDER_CONFIGS = [ BigBioConfig( name="essai_source", version=SOURCE_VERSION, description="ESSAI source schema", schema="source", subset_id="essai", ), BigBioConfig( name="essai_bigbio_text", version=BIGBIO_VERSION, description="ESSAI simplified BigBio schema for negation/speculation classification", schema="bigbio_text", subset_id="essai", ), BigBioConfig( name="essai_bigbio_kb", version=BIGBIO_VERSION, description="ESSAI simplified BigBio schema for part-of-speech-tagging", schema="bigbio_kb", subset_id="essai", ), ] def _info(self): if self.config.schema == "source": features = datasets.Features( { "id": datasets.Value("string"), "document_id": datasets.Value("string"), "text": [datasets.Value("string")], "lemmas": [datasets.Value("string")], "POS_tags": [datasets.Value("string")], "labels": [datasets.Value("string")], } ) elif self.config.schema == "bigbio_text": features = text_features elif self.config.schema == "bigbio_kb": features = kb_features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=str(_LICENSE), citation=_CITATION, ) def _split_generators(self, dl_manager): if self.config.data_dir is None: raise ValueError( "This is a local dataset. Please pass the data_dir kwarg to load_dataset." ) else: data_dir = self.config.data_dir return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"datadir": data_dir}, ), ] def _generate_examples(self, datadir): key = 0 for file in ["ESSAI_neg.txt", "ESSAI_spec.txt"]: filepath = os.path.join(datadir, file) label = "negation" if "neg" in file else "speculation" id_docs = [] id_words = [] words = [] lemmas = [] POS_tags = [] with open(filepath) as f: for line in f.readlines(): line_content = line.split("\t") if len(line_content) > 1: id_docs.append(line_content[0]) id_words.append(line_content[1]) words.append(line_content[2]) lemmas.append(line_content[3]) POS_tags.append(line_content[4]) dic = { "id_docs": np.array(list(map(int, id_docs))), "id_words": id_words, "words": words, "lemmas": lemmas, "POS_tags": POS_tags, } if self.config.schema == "source": for doc_id in set(dic["id_docs"]): idces = np.argwhere(dic["id_docs"] == doc_id)[:, 0] text = [dic["words"][id] for id in idces] text_lemmas = [dic["lemmas"][id] for id in idces] POS_tags_ = [dic["POS_tags"][id] for id in idces] yield key, { "id": key, "document_id": doc_id, "text": text, "lemmas": text_lemmas, "POS_tags": POS_tags_, "labels": [label], } key += 1 elif self.config.schema == "bigbio_text": for doc_id in set(dic["id_docs"]): idces = np.argwhere(dic["id_docs"] == doc_id)[:, 0] text = " ".join([dic["words"][id] for id in idces]) yield key, { "id": key, "document_id": doc_id, "text": text, "labels": [label], } key += 1 elif self.config.schema == "bigbio_kb": for doc_id in set(dic["id_docs"]): idces = np.argwhere(dic["id_docs"] == doc_id)[:, 0] text = [dic["words"][id] for id in idces] POS_tags_ = [dic["POS_tags"][id] for id in idces] data = { "id": str(key), "document_id": doc_id, "passages": [], "entities": [], "relations": [], "events": [], "coreferences": [], } key += 1 data["passages"] = [ { "id": str(key + i), "type": "sentence", "text": [text[i]], "offsets": [[i, i + 1]], } for i in range(len(text)) ] key += len(text) for i in range(len(text)): entity = { "id": key, "type": "POS_tag", "text": [POS_tags_[i]], "offsets": [[i, i + 1]], "normalized": [], } data["entities"].append(entity) key += 1 yield key, data