"""CLAP embedding. - feature dimension: 512 - source: https://huggingface.co./laion/larger_clap_music_and_speech """ from typing import Optional import torch import librosa import numpy as np from transformers import ClapModel, ClapProcessor class CLAPEmbedding: def __init__(self, ckpt: str = "laion/larger_clap_music_and_speech"): self.model = ClapModel.from_pretrained(ckpt) self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model.to(self.device) self.model.eval() self.processor = ClapProcessor.from_pretrained(ckpt) def get_speaker_embedding(self, wav: np.ndarray, sampling_rate: Optional[int] = None) -> np.ndarray: if sampling_rate != self.processor.feature_extractor.sampling_rate: wav = librosa.resample(wav, orig_sr=sampling_rate, target_sr=self.processor.feature_extractor.sampling_rate) inputs = self.processor( audios=wav, sampling_rate=self.processor.feature_extractor.sampling_rate, return_tensors="pt" ) with torch.no_grad(): outputs = self.model.get_audio_features(**{k: v.to(self.device) for k, v in inputs.items()}) return outputs.cpu().numpy()[0] class CLAPGeneralEmbedding(CLAPEmbedding): def __init__(self): super().__init__(ckpt="laion/larger_clap_general")