"""Pyannote speaker embedding model. - pip install pyannote.audio - feature dimension: 512 - source: https://huggingface.co./pyannote/embedding """ from typing import Optional, Union, Tuple import torch import numpy as np from pyannote.audio import Model from pyannote.audio import Inference from pyannote.audio.core.inference import fix_reproducibility, map_with_specifications class PyannoteSE: def __init__(self): model = Model.from_pretrained("pyannote/embedding") self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(self.device) model.eval() self.inference = Inference(model, window="whole") def get_speaker_embedding(self, wav: np.ndarray, sampling_rate: Optional[int] = None) -> np.ndarray: wav = torch.as_tensor(wav.reshape(1, -1), dtype=torch.float32).to(self.device) fix_reproducibility(self.inference.device) if self.inference.window == "sliding": return self.inference.slide(wav, sampling_rate, hook=None) outputs: Union[np.ndarray, Tuple[np.ndarray]] = self.inference.infer(wav[None]) def __first_sample(outputs: np.ndarray, **kwargs) -> np.ndarray: return outputs[0] return map_with_specifications( self.inference.model.specifications, __first_sample, outputs )