"""https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/models/multibanddiffusion.py""" import logging from typing import Optional, List from math import ceil import torch import julius from tqdm import tqdm from audiocraft.models.encodec import CompressionModel from audiocraft.solvers.compression import CompressionSolver class BaseEncodecTokenizer: def __init__(self, codec_model: CompressionModel, sample_per_token: int = 320, num_codebooks_encoder: Optional[int] = None) -> None: """Base class for multi-band diffusion. Args: codec_model (CompressionModel): Underlying compression model used to obtain discrete tokens. sample_per_token (int): Number of sample per token (320 for 24kHz encodec). num_codebooks_encoder (int): Number of codebook to use for encoder (default full code). """ self.codec_model = codec_model self.device = next(self.codec_model.parameters()).device self.sample_per_token = sample_per_token self.num_codebooks_encoder = num_codebooks_encoder @property def sample_rate(self) -> int: return self.codec_model.sample_rate @torch.no_grad() def wav_to_tokens(self, wav: torch.Tensor, sample_rate: List[int], cpu_offload: bool = True, chunk_length: Optional[int] = None, stride: Optional[int] = None, concat_strategy: str = "first") -> torch.Tensor: """Get audio tokens from waveform in batch. Note that Encodec generates 75 tokens per second of audio at 24 kHz meaning 320 samples (13.333 msec) per tokens. Args: wav (torch.Tensor): The audio that we want to extract the conditioning from (batch, channel, wav). sample_rate (int): Sample rate of the audio. cpu_offload (bool): Move the output tokens to cpu on the fly to save cuda memory. chunk_length (int): Chunk length to split a long audio (sample size, must be divisible by sample_per_token). stride (int): Stride over chunked audio (sample size, must be divisible by sample_per_token). concat_strategy (str): "first" or "last" to indicate which chunk to use when consolidating the overlap. """ # sanity check if wav.ndim != 3: raise ValueError(f"wav should be (batch, channel, time): {wav.ndim} dims") original_device = wav.device # sampling audio assert len(sample_rate) == len(wav) new_wav = [] for sr, single_wav in zip(sample_rate, wav): if sr != self.sample_rate: single_wav = julius.resample_frac(single_wav, sr, self.sample_rate) new_wav.append(single_wav) wav = torch.concat(new_wav) batch_size, channels, input_length = wav.shape if channels > 1: logging.warning("Audio has more than one channel but encoder takes the first channel only.") # validate chunk length and stride (if None, do one-shot process) if chunk_length: if chunk_length % self.sample_per_token != 0: raise ValueError(f"chunk_length must be divisible by {self.sample_per_token}: {chunk_length}") else: chunk_length = input_length chunk_length_latent = ceil(chunk_length / self.sample_per_token) if stride: if stride % self.sample_per_token != 0: raise ValueError(f"stride must be divisible by {self.sample_per_token}: {stride}") else: stride = chunk_length stride_latent = ceil(stride / self.sample_per_token) # initialize the token tensor num_tokens = ceil(input_length / self.sample_per_token) num_filters = self.codec_model.model.config.num_filters if self.num_codebooks_encoder is not None: if self.num_codebooks_encoder > num_filters: raise ValueError(f"num_codebooks_encoder must be smaller than {num_filters}") num_filters = self.num_codebooks_encoder tokens = torch.zeros( (batch_size, num_filters, num_tokens), device="cpu" if cpu_offload else original_device, dtype=torch.int64 ) # tokenize by chunk in a sequential manner for offset in tqdm(list(range(0, input_length - chunk_length + stride, stride))): frame = wav[:, :1, offset: offset + chunk_length] tmp_tokens, _ = self.codec_model.encode(frame.to(self.device)) offset_latent = int(offset / self.sample_per_token) tmp_tokens = tmp_tokens.to("cpu") if cpu_offload else tmp_tokens.to(original_device) if concat_strategy == "last" or offset == 0: tokens[:, :, offset_latent: offset_latent + chunk_length_latent] = tmp_tokens[:, :num_filters, :] else: overlap_token = chunk_length_latent - stride_latent tokens[:, :, offset_latent + overlap_token: offset_latent + chunk_length_latent] \ = tmp_tokens[:, :num_filters, overlap_token:] return tokens class EncodecTokenizer: @staticmethod def from_pretrained(num_codebooks_encoder: Optional[int] = None) -> BaseEncodecTokenizer: """Get the pretrained Models for MultiBandDiffusion. Args: num_codebooks_encoder (int): Number of codebook to use for encoder (default full code). """ device = 'cuda' if torch.cuda.is_available() else 'cpu' codec_model = CompressionSolver.model_from_checkpoint( '//pretrained/facebook/encodec_24khz', device=device ) codec_model = codec_model.to(device) return BaseEncodecTokenizer( codec_model=codec_model, num_codebooks_encoder=num_codebooks_encoder )