|
import os |
|
|
|
import torch |
|
from datasets import load_dataset, DatasetDict |
|
from encodec_audio_tokenizer import EncodecTokenizer |
|
|
|
|
|
direction = os.getenv("DIRECTION", "enA-jaA") |
|
sides = set(direction.split("-")) |
|
dataset_id = os.getenv("DATASET_ID", 0) |
|
batch_size = int(os.getenv("BATCH_SIZE", 64)) |
|
num_proc = int(os.getenv("NUM_PROC", 1)) |
|
hf_org = os.getenv("HF_ORG", "asahi417") |
|
hf_dataset = f"seamless-align-{direction}" |
|
dataset = load_dataset(f"{hf_org}/{hf_dataset}", f"subset_{dataset_id}", split="train") |
|
tokenizer = EncodecTokenizer.from_pretrained() |
|
|
|
|
|
def tokenize(batch): |
|
for side in sides: |
|
wav = torch.concat([i["array"] for i in batch[f"{side}.audio"]]) |
|
sr = [i["sampling_rate"] for i in batch[f"{side}.audio"]] |
|
batch[f"{side}.audio.tokens"] = tokenizer.wav_to_tokens(wav=wav, sample_rate=sr).numpy().tolist() |
|
return batch |
|
|
|
|
|
dataset = dataset.map( |
|
function=tokenize, |
|
remove_columns=[f"{s}.audio" for s in sides] + [f"{s}.url" for s in sides] + [f"{s}.duration_start" for s in sides] + [f"{s}.duration_end" for s in sides], |
|
batched=True, |
|
batch_size=batch_size, |
|
num_proc=num_proc, |
|
desc="tokenize dataset" |
|
) |
|
DatasetDict({"train": dataset}).push_to_hub( |
|
f"{hf_org}/{hf_dataset}.tokenized", |
|
config_name=f"subset_{dataset_id}" |
|
) |
|
|