|
"""Chunked tokenization experiment.""" |
|
import os |
|
from os.path import join as p_join |
|
|
|
|
|
from datasets import load_dataset |
|
import torch |
|
import pandas as pd |
|
from multibanddiffusion import MultiBandDiffusion |
|
|
|
|
|
cache_dir = p_join("experiment", "chunk_encoder") |
|
os.makedirs(cache_dir, exist_ok=True) |
|
num_codes = 3 |
|
mbd_model = MultiBandDiffusion.from_pretrained(num_codebooks_decoder=num_codes, num_codebooks_encoder=num_codes) |
|
configs = [ |
|
[32000, 32000], |
|
[32000, 28800], |
|
[32000, 25600], |
|
[64000, 64000], |
|
[64000, 60800], |
|
[64000, 57600], |
|
] |
|
|
|
|
|
def test_hf(hf_dataset: str, sample_size: int = 128, batch_size: int = 32): |
|
dataset = load_dataset(hf_dataset, split="test") |
|
dataset = dataset.select(range(sample_size)) |
|
dataset = dataset.map( |
|
lambda batch: {k: [v] for k, v in batch.items()}, |
|
batched=True, |
|
batch_size=batch_size |
|
) |
|
full_accuracy_table = [] |
|
for data in dataset: |
|
sr_list = [d["sampling_rate"] for d in data["audio"]] |
|
assert len(set(sr_list)) == 1, sr_list |
|
sr = sr_list[0] |
|
array = [d["array"] for d in data["audio"]] |
|
max_length = max([len(a) for a in array]) |
|
array = [a + [0] * (max_length - len(a)) for a in array] |
|
wav = torch.as_tensor(array, dtype=torch.float32).unsqueeze_(1) |
|
tokens_original = mbd_model.wav_to_tokens(wav, sr) |
|
total_vars = tokens_original.shape.numel() |
|
accuracy_table = {} |
|
for chunk, stride in configs: |
|
tokens = mbd_model.wav_to_tokens(wav, sr, chunk_length=chunk, stride=stride) |
|
assert tokens_original.shape == tokens.shape, f"{tokens_original.shape} != {tokens.shape}" |
|
accuracy = {"full": (tokens_original == tokens).sum().item() / total_vars * 100} |
|
accuracy.update({f"code_{c + 1}": (tokens_original[0, c, :] == tokens[0, c, :]).sum().item() / tokens_original.shape[2] * 100 for c in range(num_codes)}) |
|
accuracy_table[f"chunk_{chunk}.stride_{stride}"] = accuracy |
|
full_accuracy_table.append(accuracy_table) |
|
df_accuracy = sum(pd.DataFrame(accuracy_table) for accuracy_table in full_accuracy_table)/len(full_accuracy_table) |
|
df_accuracy.to_csv(p_join(cache_dir, f"token_accuracy.{os.path.basename(hf_dataset)}.{num_codes}codes.csv")) |
|
|
|
|
|
if __name__ == '__main__': |
|
test_hf("japanese-asr/ja_asr.reazonspeech_test", sample_size=64, batch_size=16) |
|
test_hf("japanese-asr/ja_asr.jsut_basic5000", sample_size=64, batch_size=16) |
|
|