reborn-uasr_multilingual-librispeech-no-silence-100hr
/
reborn-uasr_multilingual-librispeech-no-silence-100hr.py
# coding=utf-8 | |
# Copyright 2022 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
""" | |
Librispeech automatic speech recognition dataset for reproducing Reborn UASR results. | |
Note that the silence in each audio has been removed by performing unsupervised VAD (https://github.com/zhenghuatan/rVADfast). | |
We only process the 100-hour split from LibriSpeech 'train-clean-100' as the training split. | |
""" | |
import os | |
import datasets | |
_CITATION = """\ | |
@article{Pratap2020MLSAL, | |
title={MLS: A Large-Scale Multilingual Dataset for Speech Research}, | |
author={Vineel Pratap and Qiantong Xu and Anuroop Sriram and Gabriel Synnaeve and Ronan Collobert}, | |
journal={ArXiv}, | |
year={2020}, | |
volume={abs/2012.03411} | |
} | |
@article{tan2020rvad, | |
title={rVAD: An unsupervised segment-based robust voice activity detection method}, | |
author={Tan, Zheng-Hua and Dehak, Najim and others}, | |
journal={Computer speech \& language}, | |
volume={59}, | |
pages={1--21}, | |
year={2020}, | |
publisher={Elsevier} | |
} | |
@article{tseng2024reborn, | |
title={REBORN: Reinforcement-Learned Boundary Segmentation with Iterative Training for Unsupervised ASR}, | |
author={Tseng, Liang-Hsuan and Hu, En-Pei and Chiang, Cheng-Han and Tseng, Yuan and Lee, Hung-yi and Lee, Lin-shan and Sun, Shao-Hua}, | |
journal={arXiv preprint arXiv:2402.03988}, | |
year={2024} | |
} | |
""" | |
_DESCRIPTION = """\ | |
LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz, | |
prepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read | |
audiobooks from the LibriVox project, and has been carefully segmented and aligned | |
This dataset is the 100-hour subset of LibriSpeech 'train-clean-100' split, with silence removed. | |
Additionally, all the dev and test sets are included for fair comparison and evaluation if needed. | |
The dataset is prepared by the Reborn UASR team. | |
Arxiv paper link: https://arxiv.org/abs/2402.03988 | |
""" | |
_URL = "http://www.openslr.org/12" | |
_DL_URL_FORMAT = "data/{name}" | |
class RebornLibrispeechConfig(datasets.BuilderConfig): | |
"""BuilderConfig for Reborn-Librispeech.""" | |
def __init__(self, name, **kwargs): | |
""" | |
Args: | |
name: `string`, name of dataset config (=language) | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(RebornLibrispeechConfig, self).__init__( | |
version=datasets.Version("2.12.0", ""), name=name, **kwargs | |
) | |
# relative path to full data inside a repo (for example `data/train-clean-100`) | |
self.data_root_url = _DL_URL_FORMAT.format(name=name) | |
self.metadata_root_url = self.data_root_url.replace("data", "metadata") | |
class RebornLibrispeech(datasets.GeneratorBasedBuilder): | |
"""Multilingual Librispeech dataset.""" | |
BUILDER_CONFIGS = [ | |
RebornLibrispeechConfig(name="german", description="MLS 100hr German dataset without silence"), | |
RebornLibrispeechConfig(name="french", description="MLS 100hr French dataset without silence"), | |
RebornLibrispeechConfig(name="dutch", description="MLS 100hr Dutch dataset without silence"), | |
RebornLibrispeechConfig(name="spanish", description="MLS 100hr Spanish dataset without silence"), | |
RebornLibrispeechConfig(name="italian", description="MLS 100hr Italian dataset without silence"), | |
RebornLibrispeechConfig(name="portuguese", description="MLS 100hr Portuguese dataset without silence"), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"file": datasets.Value("string"), | |
"audio": datasets.features.Audio(sampling_rate=16_000), | |
"word": datasets.Value("string"), | |
"phoneme": datasets.Value("string"), | |
"speaker_id": datasets.Value("int64"), | |
"chapter_id": datasets.Value("int64"), | |
"id": datasets.Value("string"), | |
} | |
), | |
supervised_keys=("file", "phone"), | |
homepage=_URL, | |
citation=_CITATION, | |
task_templates=None, | |
) | |
def _split_generators(self, dl_manager): | |
metadata = dl_manager.download({ | |
"train_100hr": f"{self.config.metadata_root_url}/train_100hr.tsv", | |
"dev": f"{self.config.metadata_root_url}/dev.tsv", | |
"test": f"{self.config.metadata_root_url}/test.tsv", | |
"dev_small": f"{self.config.metadata_root_url}/dev_small.tsv", | |
}) | |
all_splits = [ | |
"train_100hr", | |
"dev", | |
"test", | |
] | |
audio_archives = {} | |
for split in all_splits: | |
audio_archives[split] = dl_manager.download( | |
os.path.join(self.config.data_root_url, f"{split}.tar.gz") | |
) | |
# (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files: | |
local_extracted_archives = dl_manager.extract(audio_archives) if not dl_manager.is_streaming else {} | |
train_splits = [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"metadata_fpaths": [metadata["train_100hr"]], | |
"audio_archives": [dl_manager.iter_archive(audio_archives["train_100hr"])], | |
"local_extracted_archives": [local_extracted_archives.get("train_100hr")], | |
} | |
), | |
datasets.SplitGenerator( | |
name="train.100hr", | |
gen_kwargs={ | |
"metadata_fpaths": [metadata["train_100hr"]], | |
"audio_archives": [dl_manager.iter_archive(audio_archives["train_100hr"])], | |
"local_extracted_archives": [local_extracted_archives.get("train_100hr")], | |
} | |
), | |
] | |
dev_splits = [ | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"metadata_fpath": [metadata["dev"]], | |
"audio_archives": [dl_manager.iter_archive(audio_archives["dev"])], | |
"local_extracted_archives": [local_extracted_archives.get("dev")], | |
} | |
), | |
datasets.SplitGenerator( | |
name="dev", | |
gen_kwargs={ | |
"metadata_fpath": [metadata["dev"]], | |
"audio_archives": [dl_manager.iter_archive(audio_archives["dev"])], | |
"local_extracted_archives": [local_extracted_archives.get("dev")], | |
} | |
), | |
datasets.SplitGenerator( | |
name="valid", | |
gen_kwargs={ | |
"metadata_fpath": [metadata["dev"]], | |
"audio_archives": [dl_manager.iter_archive(audio_archives["dev"])], | |
"local_extracted_archives": [local_extracted_archives.get("dev")], | |
} | |
), | |
datasets.SplitGenerator( | |
name="dev.small", | |
gen_kwargs={ | |
"metadata_fpaths": [metadata["dev_small"]], | |
"audio_archives": [dl_manager.iter_archive(audio_archives["dev"])], | |
"local_extracted_archives": [local_extracted_archives.get("dev")], | |
}, | |
), | |
] | |
test_splits = [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"metadata_fpaths": [metadata["test"]], | |
"audio_archives": [dl_manager.iter_archive(audio_archives["test"])], | |
"local_extracted_archives": [local_extracted_archives.get("test")], | |
} | |
), | |
] | |
return train_splits + dev_splits + test_splits | |
def _generate_examples(self, metadata_fpaths, audio_archives, local_extracted_archives): | |
"""Generate examples from a Multilingual LibriSpeech data dir.""" | |
words, phones = dict(), dict() | |
for metadata_fpath in metadata_fpaths: | |
with open(metadata_fpath, "r", encoding="utf-8") as file: | |
for line in file: | |
audio_fpath, word, phone = line.strip().split("\t") | |
audio_id = audio_fpath.split('/')[-1].split(".flac")[0] | |
words[audio_id] = word | |
phones[audio_id] = phone | |
for archive_idx, audio_archive in enumerate(audio_archives): | |
for audio_filename, file in audio_archive: | |
audio_id = audio_filename.split('/')[-1].split(".flac")[0] | |
speaker_id, chapter_id = (int(item) for item in audio_id.split("_")[:2]) | |
word = words.get(audio_id, None) | |
if word == None: | |
continue | |
local_audio_file_path = os.path.join( | |
local_extracted_archives[archive_idx], audio_filename | |
) if local_extracted_archives[archive_idx] else None | |
yield audio_filename, { | |
"file": local_audio_file_path, | |
"audio": { | |
"path": local_audio_file_path if local_audio_file_path else audio_filename, | |
"bytes": file.read() | |
}, | |
"word": word, | |
"phoneme": phones.get(audio_id, None), | |
"speaker_id": speaker_id, | |
"chapter_id": chapter_id, | |
"id": audio_id | |
} |