import os import pandas as pd import datasets class CLEFIP2011Config(datasets.BuilderConfig): """Custom Config for CLEFIP2011""" def __init__(self, dataset_type=None, **kwargs): super(CLEFIP2011Config, self).__init__(**kwargs) self.dataset_type = dataset_type class CLEFIP2011(datasets.GeneratorBasedBuilder): """Custom Dataset Loader""" BUILDER_CONFIGS = [ CLEFIP2011Config( name="bibliographic", version=datasets.Version("1.0.0"), description="CLEF-IP 2011 Bibliographic Data", dataset_type="bibliographic", ), ] def _info(self): if self.config.dataset_type == "bibliographic": features = datasets.Features( { "ucid": datasets.Value("string"), "country": datasets.Value("string"), "doc_number": datasets.Value("string"), "kind": datasets.Value("string"), "lang": datasets.Value("string"), "corrected_lang": datasets.Value("string"), "date": datasets.Value("string"), "family_id": datasets.Value("string"), "date_produced": datasets.Value("string"), "status": datasets.Value("string"), "ecla_list": datasets.Value("string"), "applicant_name_list": datasets.Value("string"), "inventor_name_list": datasets.Value("string"), "title_de_text": datasets.Value("string"), "title_fr_text": datasets.Value("string"), "title_en_text": datasets.Value("string"), "abstract_de_exist": datasets.Value("bool"), "abstract_fr_exist": datasets.Value("bool"), "abstract_en_exist": datasets.Value("bool"), "description_de_exist": datasets.Value("bool"), "description_fr_exist": datasets.Value("bool"), "description_en_exist": datasets.Value("bool"), "claims_de_exist": datasets.Value("bool"), "claims_fr_exist": datasets.Value("bool"), "claims_en_exist": datasets.Value("bool"), } ) return datasets.DatasetInfo( description="CLEF-IP 2011 Bibliographic dataset.", features=features, supervised_keys=None, ) def _split_generators(self, dl_manager): archive_path = dl_manager.download_and_extract( "https://huggingface.co./datasets/amylonidis/PatClass2011/resolve/main/clefip2011_bibliographic_clean.tar.gz" ) bibliographic_file = os.path.join(archive_path, "clefip2011_bibliographic.csv") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepaths": [bibliographic_file], "split": "train", }, ), ] def _generate_examples(self, filepaths, split): for filepath in filepaths: df = pd.read_csv(filepath, header=None) column_names = [ "ucid", "country", "doc_number", "kind", "lang", "corrected_lang", "date", "family_id", "date_produced", "status", "ecla_list", "applicant_name_list", "inventor_name_list", "title_de_text", "title_fr_text", "title_en_text", "abstract_de_exist", "abstract_fr_exist", "abstract_en_exist", "description_de_exist", "description_fr_exist", "description_en_exist", "claims_de_exist", "claims_fr_exist", "claims_en_exist", ] df.columns = column_names df["date"] = pd.to_datetime(df["date"], format="%Y%m%d").astype(str) df["date_produced"] = pd.to_datetime( df["date_produced"], format="%Y%m%d" ).astype(str) boolean_columns = [ "abstract_de_exist", "abstract_fr_exist", "abstract_en_exist", "description_de_exist", "description_fr_exist", "description_en_exist", "claims_de_exist", "claims_fr_exist", "claims_en_exist", ] for col in boolean_columns: df[col] = df[col].astype(bool) for idx, row in df.iterrows(): yield idx, row.to_dict()