File size: 5,045 Bytes
c4a4c76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import pandas as pd
import datasets


class CLEFIP2011Config(datasets.BuilderConfig):
    """Custom Config for CLEFIP2011"""

    def __init__(self, dataset_type=None, **kwargs):
        super(CLEFIP2011Config, self).__init__(**kwargs)
        self.dataset_type = dataset_type


class CLEFIP2011(datasets.GeneratorBasedBuilder):
    """Custom Dataset Loader"""

    BUILDER_CONFIGS = [
        CLEFIP2011Config(
            name="bibliographic",
            version=datasets.Version("1.0.0"),
            description="CLEF-IP 2011 Bibliographic Data",
            dataset_type="bibliographic",
        ),
    ]

    def _info(self):

        if self.config.dataset_type == "bibliographic":
            features = datasets.Features(
                {
                    "ucid": datasets.Value("string"),
                    "country": datasets.Value("string"),
                    "doc_number": datasets.Value("string"),
                    "kind": datasets.Value("string"),
                    "lang": datasets.Value("string"),
                    "corrected_lang": datasets.Value("string"),
                    "date": datasets.Value("string"),
                    "family_id": datasets.Value("string"),
                    "date_produced": datasets.Value("string"),
                    "status": datasets.Value("string"),
                    "ecla_list": datasets.Value("string"),
                    "applicant_name_list": datasets.Value("string"),
                    "inventor_name_list": datasets.Value("string"),
                    "title_de_text": datasets.Value("string"),
                    "title_fr_text": datasets.Value("string"),
                    "title_en_text": datasets.Value("string"),
                    "abstract_de_exist": datasets.Value("bool"),
                    "abstract_fr_exist": datasets.Value("bool"),
                    "abstract_en_exist": datasets.Value("bool"),
                    "description_de_exist": datasets.Value("bool"),
                    "description_fr_exist": datasets.Value("bool"),
                    "description_en_exist": datasets.Value("bool"),
                    "claims_de_exist": datasets.Value("bool"),
                    "claims_fr_exist": datasets.Value("bool"),
                    "claims_en_exist": datasets.Value("bool"),
                }
            )
        return datasets.DatasetInfo(
            description="CLEF-IP 2011 Bibliographic dataset.",
            features=features,
            supervised_keys=None,
        )

    def _split_generators(self, dl_manager):

        archive_path = dl_manager.download_and_extract(
            "https://huggingface.co./datasets/amylonidis/PatClass2011/resolve/main/clefip2011_bibliographic_clean.tar.gz"
        )

        bibliographic_file = os.path.join(archive_path, "clefip2011_bibliographic.csv")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepaths": [bibliographic_file],
                    "split": "train",
                },
            ),
        ]

    def _generate_examples(self, filepaths, split):

        for filepath in filepaths:
            df = pd.read_csv(filepath, header=None)

            column_names = [
                "ucid",
                "country",
                "doc_number",
                "kind",
                "lang",
                "corrected_lang",
                "date",
                "family_id",
                "date_produced",
                "status",
                "ecla_list",
                "applicant_name_list",
                "inventor_name_list",
                "title_de_text",
                "title_fr_text",
                "title_en_text",
                "abstract_de_exist",
                "abstract_fr_exist",
                "abstract_en_exist",
                "description_de_exist",
                "description_fr_exist",
                "description_en_exist",
                "claims_de_exist",
                "claims_fr_exist",
                "claims_en_exist",
            ]
            df.columns = column_names

            df["date"] = pd.to_datetime(df["date"], format="%Y%m%d").astype(str)

            df["date_produced"] = pd.to_datetime(
                df["date_produced"], format="%Y%m%d"
            ).astype(str)

            boolean_columns = [
                "abstract_de_exist",
                "abstract_fr_exist",
                "abstract_en_exist",
                "description_de_exist",
                "description_fr_exist",
                "description_en_exist",
                "claims_de_exist",
                "claims_fr_exist",
                "claims_en_exist",
            ]
            for col in boolean_columns:
                df[col] = df[col].astype(bool)

            for idx, row in df.iterrows():
                yield idx, row.to_dict()