|
import datetime |
|
import os |
|
import numpy as np |
|
import wandb |
|
|
|
from utils import common |
|
|
|
|
|
class WBLogger: |
|
|
|
def __init__(self, opts): |
|
wandb_run_name = os.path.basename(opts.exp_dir) |
|
wandb.init(project="pixel2style2pixel", config=vars(opts), name=wandb_run_name) |
|
|
|
@staticmethod |
|
def log_best_model(): |
|
wandb.run.summary["best-model-save-time"] = datetime.datetime.now() |
|
|
|
@staticmethod |
|
def log(prefix, metrics_dict, global_step): |
|
log_dict = {f'{prefix}_{key}': value for key, value in metrics_dict.items()} |
|
log_dict["global_step"] = global_step |
|
wandb.log(log_dict) |
|
|
|
@staticmethod |
|
def log_dataset_wandb(dataset, dataset_name, n_images=16): |
|
idxs = np.random.choice(a=range(len(dataset)), size=n_images, replace=False) |
|
data = [wandb.Image(dataset.source_paths[idx]) for idx in idxs] |
|
wandb.log({f"{dataset_name} Data Samples": data}) |
|
|
|
@staticmethod |
|
def log_images_to_wandb(x, y, y_hat, id_logs, prefix, step, opts): |
|
im_data = [] |
|
column_names = ["Source", "Target", "Output"] |
|
if id_logs is not None: |
|
column_names.append("ID Diff Output to Target") |
|
for i in range(len(x)): |
|
cur_im_data = [ |
|
wandb.Image(common.log_input_image(x[i], opts)), |
|
wandb.Image(common.tensor2im(y[i])), |
|
wandb.Image(common.tensor2im(y_hat[i])), |
|
] |
|
if id_logs is not None: |
|
cur_im_data.append(id_logs[i]["diff_target"]) |
|
im_data.append(cur_im_data) |
|
outputs_table = wandb.Table(data=im_data, columns=column_names) |
|
wandb.log({f"{prefix.title()} Step {step} Output Samples": outputs_table}) |
|
|