Update README.md
Browse files
README.md
CHANGED
@@ -44,6 +44,18 @@ configs:
|
|
44 |
data_files:
|
45 |
- split: train
|
46 |
path: data/hrf-compressibility-window-later-seed3/train/batch_*.zip
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
dataset_info:
|
48 |
- config_name: ddpm-celebahq
|
49 |
features:
|
@@ -105,6 +117,24 @@ dataset_info:
|
|
105 |
dtype: image
|
106 |
- name: reward
|
107 |
dtype: float
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
---
|
109 |
|
110 |
# Dataset Card for Eval Finetuning Diffusion Models with Reinforcement Learning
|
|
|
44 |
data_files:
|
45 |
- split: train
|
46 |
path: data/hrf-compressibility-window-later-seed3/train/batch_*.zip
|
47 |
+
- config_name: hrf-incompressibility-window-baseline1
|
48 |
+
data_files:
|
49 |
+
- split: train
|
50 |
+
path: data/hrf-incompressibility-window-baseline-seed1/train/batch_*.zip
|
51 |
+
- config_name: hrf-incompressibility-window-baseline2
|
52 |
+
data_files:
|
53 |
+
- split: train
|
54 |
+
path: data/hrf-incompressibility-window-baseline-seed2/train/batch_*.zip
|
55 |
+
- config_name: hrf-incompressibility-window-baseline3
|
56 |
+
data_files:
|
57 |
+
- split: train
|
58 |
+
path: data/hrf-incompressibility-window-baseline-seed3/train/batch_*.zip
|
59 |
dataset_info:
|
60 |
- config_name: ddpm-celebahq
|
61 |
features:
|
|
|
117 |
dtype: image
|
118 |
- name: reward
|
119 |
dtype: float
|
120 |
+
- config_name: hrf-incompressibility-window-baseline1
|
121 |
+
features:
|
122 |
+
- name: image
|
123 |
+
dtype: image
|
124 |
+
- name: reward
|
125 |
+
dtype: float
|
126 |
+
- config_name: hrf-incompressibility-window-baseline2
|
127 |
+
features:
|
128 |
+
- name: image
|
129 |
+
dtype: image
|
130 |
+
- name: reward
|
131 |
+
dtype: float
|
132 |
+
- config_name: hrf-incompressibility-window-baseline3
|
133 |
+
features:
|
134 |
+
- name: image
|
135 |
+
dtype: image
|
136 |
+
- name: reward
|
137 |
+
dtype: float
|
138 |
---
|
139 |
|
140 |
# Dataset Card for Eval Finetuning Diffusion Models with Reinforcement Learning
|