|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Build a corpus for evaluation |
|
""" |
|
|
|
import sys |
|
import re |
|
from operator import xor |
|
import argparse |
|
import os |
|
import pandas as pd |
|
import numpy as np |
|
import qalsadi.analex |
|
import pyarabic.araby as araby |
|
import numpy as np |
|
def grabargs(): |
|
parser = argparse.ArgumentParser(description='Convert Quran Corpus into CSV format.') |
|
|
|
|
|
parser.add_argument("-f", dest="filename", required=True, |
|
help="input file to convert", metavar="FILE") |
|
parser.add_argument("-f2", dest="filename2", required=False, |
|
help="input file to convert", metavar="FILE2") |
|
parser.add_argument("-f3", dest="filename3", required=False, |
|
help="input file to convert", metavar="FILE3") |
|
|
|
parser.add_argument("-c", dest="command", required=True, |
|
help="command( build, or analyze)", metavar="COMMAND") |
|
|
|
parser.add_argument("-o", dest="outfile", required=True, |
|
help="Output file to convert", metavar="OUT_FILE") |
|
|
|
|
|
|
|
parser.add_argument("-l", dest = 'limit', type=int, nargs='?', |
|
const=0, |
|
help="limit lines to read") |
|
parser.add_argument("--all", type=bool, nargs='?', |
|
const=True, |
|
help="Test all stemmers.") |
|
args = parser.parse_args() |
|
return args |
|
|
|
class spell_index: |
|
|
|
def __init__(self,): |
|
pass |
|
|
|
def read(self, filename ): |
|
""" read csv """ |
|
df = pd.read_csv(filename, delimiter="\t", encoding="utf8") |
|
return df |
|
def save(self, adapted_result, outfile): |
|
df = pd.DataFrame(adapted_result) |
|
return df |
|
def calcul_stats(self, dataframe): |
|
""" |
|
Calculer |
|
""" |
|
df = dataframe |
|
df.loc[:, 'lemma'] = df['original'].apply(araby.strip_tashkeel) |
|
df.loc[:, 'word_nm'] = df['word'].apply(araby.strip_tashkeel) |
|
|
|
|
|
|
|
total = df.shape[0] |
|
stats_list={ |
|
"count":total, |
|
"uniq roots":df['root'].nunique(), |
|
"uniq lemmas":df['lemma'].nunique(), |
|
"uniq words":df['word_nm'].nunique(), |
|
"mean words by root": df[['word_nm','root' ]].groupby('root').count().mean(), |
|
"min words by root": df[['word_nm','root' ]].groupby('root').count().min(), |
|
"max words by root": df[['word_nm','root' ]].groupby('root').count().max(), |
|
"mean words by lemmas":df[['word_nm','lemma']].groupby('lemma').count().mean(), |
|
} |
|
|
|
dstats = pd.DataFrame.from_dict(stats_list, orient='index') |
|
|
|
return dstats |
|
def read_text_csv(self, filename): |
|
lines =[] |
|
try: |
|
with open(filename,) as inputfile: |
|
for line in inputfile: |
|
lines.append(line.decode('utf8')) |
|
|
|
except: |
|
print " Can't Open the given File ", filename; |
|
sys.exit(); |
|
|
|
tokens = [] |
|
for line in lines: |
|
tokens.extend(araby.tokenize(line)) |
|
tokens = [ t.replace('\n', '\\n') for t in tokens] |
|
df1 = pd.DataFrame({'word': tokens}) |
|
return df1 |
|
def join(self, filename, outfile, filename2 = "", how_join="outer"): |
|
|
|
df = self.read_text_csv(filename) |
|
df.loc[:,"correct"] =u"" |
|
print(df.head()) |
|
|
|
|
|
df2 = self.read(filename2) |
|
df2 = df2[['word','n1','suggest']].drop_duplicates() |
|
|
|
|
|
|
|
df_cmp1 = pd.merge(df, df2, how=how_join, on='word') |
|
df_cmp1['n1'] = df_cmp1['n1'].fillna(0) |
|
df_cmp1['suggest'] = df_cmp1['suggest'].fillna("") |
|
df_cmp1.to_csv(outfile, sep="\t", encoding="utf8") |
|
print(df_cmp1.head()) |
|
|
|
|
|
df2.to_csv(outfile+".wrong", sep="\t", encoding="utf8") |
|
|
|
print("Data is saved on %s file"%(outfile)) |
|
print("Data (wrong only) is saved on %s file"%(outfile+".wrong")) |
|
|
|
def run(self, command, filename="", outfile="", filename2 = "",filename3 = ""): |
|
""" |
|
run command |
|
""" |
|
if command == "join": |
|
|
|
self.join(filename, outfile, filename2 = filename2, how_join="left") |
|
|
|
else: |
|
pass |
|
|
|
def main(): |
|
|
|
args =grabargs() |
|
filename = args.filename |
|
filename_2 = args.filename2 |
|
filename_3 = args.filename3 |
|
outfile = args.outfile |
|
all_stemmers = args.all |
|
limit = args.limit |
|
command = args.command |
|
|
|
qi = spell_index() |
|
|
|
qi.run(command, filename, outfile, filename2 = filename_2) |
|
|
|
return True |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|