Datasets:
alexey-zhavoronkin
commited on
Commit
•
d5adfda
1
Parent(s):
8b94b3b
Upload cinic10.py
Browse files- cinic10.py +163 -0
cinic10.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path
|
2 |
+
import pickle
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import Any, Callable, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
from torchvision.datasets.utils import check_integrity, download_and_extract_archive
|
10 |
+
from torchvision.datasets.vision import VisionDataset
|
11 |
+
|
12 |
+
|
13 |
+
class CINIC10(VisionDataset):
|
14 |
+
"""`CINIC10 <https://github.com/BayesWatch/cinic-10>`_ Dataset.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
root (str or ``pathlib.Path``): Root directory of dataset where directory
|
18 |
+
``cinic-10-batches-py`` exists or will be saved to if download is set to True.
|
19 |
+
train (bool, optional): If True, creates dataset from training set, otherwise
|
20 |
+
creates from test set.
|
21 |
+
transform (callable, optional): A function/transform that takes in a PIL image
|
22 |
+
and returns a transformed version. E.g, ``transforms.RandomCrop``
|
23 |
+
target_transform (callable, optional): A function/transform that takes in the
|
24 |
+
target and transforms it.
|
25 |
+
download (bool, optional): If true, downloads the dataset from the internet and
|
26 |
+
puts it in root directory. If dataset is already downloaded, it is not
|
27 |
+
downloaded again.
|
28 |
+
|
29 |
+
"""
|
30 |
+
|
31 |
+
base_folder = "cinic-10-batches-py"
|
32 |
+
url = "https://huggingface.co/datasets/alexey-zhavoronkin/CINIC10/resolve/main/cinic-10-python.tar.gz?download=true"
|
33 |
+
filename = "cinic-10-python.tar.gz"
|
34 |
+
tgz_md5 = None
|
35 |
+
train_list = [
|
36 |
+
["data_batch_1", None],
|
37 |
+
["data_batch_2", None],
|
38 |
+
["data_batch_3", None],
|
39 |
+
["data_batch_4", None],
|
40 |
+
["data_batch_5", None],
|
41 |
+
["data_batch_6", None],
|
42 |
+
["data_batch_7", None],
|
43 |
+
["data_batch_8", None],
|
44 |
+
["data_batch_9", None],
|
45 |
+
["data_batch_10", None],
|
46 |
+
["data_batch_11", None],
|
47 |
+
["data_batch_12", None],
|
48 |
+
["data_batch_13", None],
|
49 |
+
["data_batch_14", None],
|
50 |
+
|
51 |
+
|
52 |
+
]
|
53 |
+
|
54 |
+
test_list = [
|
55 |
+
["test_batch_1", None],
|
56 |
+
["test_batch_2", None],
|
57 |
+
["test_batch_3", None],
|
58 |
+
["test_batch_4", None],
|
59 |
+
["test_batch_5", None],
|
60 |
+
["test_batch_6", None],
|
61 |
+
["test_batch_7", None],
|
62 |
+
|
63 |
+
|
64 |
+
]
|
65 |
+
meta = {
|
66 |
+
"filename": "batches.meta",
|
67 |
+
"key": "label_names",
|
68 |
+
"md5": None,
|
69 |
+
}
|
70 |
+
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
root: Union[str, Path],
|
74 |
+
train: bool = True,
|
75 |
+
transform: Optional[Callable] = None,
|
76 |
+
target_transform: Optional[Callable] = None,
|
77 |
+
download: bool = False,
|
78 |
+
) -> None:
|
79 |
+
|
80 |
+
super().__init__(root, transform=transform, target_transform=target_transform)
|
81 |
+
|
82 |
+
self.train = train # training set or test set
|
83 |
+
|
84 |
+
if download:
|
85 |
+
self.download()
|
86 |
+
|
87 |
+
if not self._check_integrity():
|
88 |
+
raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
|
89 |
+
|
90 |
+
if self.train:
|
91 |
+
downloaded_list = self.train_list
|
92 |
+
else:
|
93 |
+
downloaded_list = self.test_list
|
94 |
+
|
95 |
+
self.data: Any = []
|
96 |
+
self.targets = []
|
97 |
+
|
98 |
+
# now load the picked numpy arrays
|
99 |
+
for file_name, checksum in downloaded_list:
|
100 |
+
file_path = os.path.join(self.root, self.base_folder, file_name)
|
101 |
+
with open(file_path, "rb") as f:
|
102 |
+
entry = pickle.load(f, encoding="latin1")
|
103 |
+
self.data.append(entry["data"])
|
104 |
+
if "labels" in entry:
|
105 |
+
self.targets.extend(entry["labels"])
|
106 |
+
else:
|
107 |
+
self.targets.extend(entry["fine_labels"])
|
108 |
+
|
109 |
+
self.data = np.vstack(self.data).reshape(-1, 3, 32, 32)
|
110 |
+
self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC
|
111 |
+
|
112 |
+
self._load_meta()
|
113 |
+
|
114 |
+
def _load_meta(self) -> None:
|
115 |
+
path = os.path.join(self.root, self.base_folder, self.meta["filename"])
|
116 |
+
if not check_integrity(path, self.meta["md5"]):
|
117 |
+
raise RuntimeError("Dataset metadata file not found or corrupted. You can use download=True to download it")
|
118 |
+
with open(path, "rb") as infile:
|
119 |
+
data = pickle.load(infile, encoding="latin1")
|
120 |
+
self.classes = data[self.meta["key"]]
|
121 |
+
self.class_to_idx = {_class: i for i, _class in enumerate(self.classes)}
|
122 |
+
|
123 |
+
def __getitem__(self, index: int) -> Tuple[Any, Any]:
|
124 |
+
"""
|
125 |
+
Args:
|
126 |
+
index (int): Index
|
127 |
+
|
128 |
+
Returns:
|
129 |
+
tuple: (image, target) where target is index of the target class.
|
130 |
+
"""
|
131 |
+
img, target = self.data[index], self.targets[index]
|
132 |
+
|
133 |
+
# doing this so that it is consistent with all other datasets
|
134 |
+
# to return a PIL Image
|
135 |
+
img = Image.fromarray(img)
|
136 |
+
|
137 |
+
if self.transform is not None:
|
138 |
+
img = self.transform(img)
|
139 |
+
|
140 |
+
if self.target_transform is not None:
|
141 |
+
target = self.target_transform(target)
|
142 |
+
|
143 |
+
return img, target
|
144 |
+
|
145 |
+
def __len__(self) -> int:
|
146 |
+
return len(self.data)
|
147 |
+
|
148 |
+
def _check_integrity(self) -> bool:
|
149 |
+
for filename, md5 in self.train_list + self.test_list:
|
150 |
+
fpath = os.path.join(self.root, self.base_folder, filename)
|
151 |
+
if not check_integrity(fpath, md5):
|
152 |
+
return False
|
153 |
+
return True
|
154 |
+
|
155 |
+
def download(self) -> None:
|
156 |
+
if self._check_integrity():
|
157 |
+
print("Files already downloaded and verified")
|
158 |
+
return
|
159 |
+
download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5)
|
160 |
+
|
161 |
+
def extra_repr(self) -> str:
|
162 |
+
split = "Train" if self.train is True else "Test"
|
163 |
+
return f"Split: {split}"
|