File size: 12,922 Bytes
35dd213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06c0631
 
35dd213
06c0631
 
35dd213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06c0631
 
 
 
 
 
 
 
35dd213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""


import xml.etree.ElementTree as ET
import os

import datasets
import datasets.features.features
from datasets import ClassLabel


_CITATION = """\
@inproceedings{pontiki-etal-2015-semeval,
    title = "{S}em{E}val-2015 Task 12: Aspect Based Sentiment Analysis",
    author = "Pontiki, Maria  and
      Galanis, Dimitris  and
      Papageorgiou, Haris  and
      Manandhar, Suresh  and
      Androutsopoulos, Ion",
    booktitle = "Proceedings of the 9th International Workshop on Semantic Evaluation ({S}em{E}val 2015)",
    month = jun,
    year = "2015",
    address = "Denver, Colorado",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S15-2082",
    doi = "10.18653/v1/S15-2082",
    pages = "486--495",
}
"""

_DESCRIPTION = """\
These are the datasets for Aspect Based Sentiment Analysis (ABSA), Task 12 of SemEval-2015.
"""

_HOMEPAGE = "https://alt.qcri.org/semeval2015/task12/index.php?id=data-and-tools"

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
    "restaurants": {"trial": "absa-2015_restaurants_trial.xml",
                    "train": "ABSA15_RestaurantsTrain/ABSA-15_Restaurants_Train_Final.xml",
                    "test": "ABSA15_Restaurants_Test.xml"},
    "laptops": {"trial": "absa-2015_laptops_trial.xml",
                "train": "ABSA15_LaptopsTrain/ABSA-15_Laptops_Train_Data.xml",
                "test": "ABSA15_Laptops_Test.xml"},
    "hotels": {"test": "ABSA15_Hotels_Test.xml"},
}


class SemEval2015Task12(datasets.GeneratorBasedBuilder):
    """These are the datasets for Aspect Based Sentiment Analysis (ABSA), Task 12 of SemEval-2015."""

    VERSION = datasets.Version("1.1.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="restaurants", version=VERSION, description="Restaurant reviews"),
        datasets.BuilderConfig(name="laptops", version=VERSION, description="Laptop reviews"),
        datasets.BuilderConfig(name="hotels", version=VERSION, description="Hotel reviews"),
    ]

    # DEFAULT_CONFIG_NAME = "first_domain"  # It's not mandatory to have a default configuration. Just use one if it make sense.

    def _info(self):
        # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
        categories = {
            "restaurants": {
                "entities": ["RESTAURANT", "FOOD", "DRINKS", "AMBIENCE", "SERVICE", "LOCATION"],
                "attributes": ["GENERAL", "PRICES", "QUALITY", "STYLE_OPTIONS", "MISCELLANEOUS"]
            },
            "laptops": {
                "entities": ["LAPTOP", "DISPLAY", "KEYBOARD", "MOUSE", "MOTHERBOARD", "CPU", "FANS_COOLING", "PORTS",
                             "MEMORY", "POWER_SUPPLY", "OPTICAL_DRIVES", "BATTERY", "GRAPHICS", "HARD_DISC",
                             "MULTIMEDIA_DEVICES", "HARDWARE", "SOFTWARE", "OS", "WARRANTY", "SHIPPING", "SUPPORT",
                             "COMPANY"],
                "attributes": ["GENERAL", "PRICE", "QUALITY", "OPERATION_PERFORMANCE", "USABILITY", "DESIGN_FEATURES",
                               "PORTABILITY", "CONNECTIVITY", "MISCELLANEOUS"]
            },
            "hotels": {
                "entities": ["HOTEL", "ROOMS", "FACILITIES", "ROOMS_AMENITIES", "SERVICE", "LOCATION", "FOOD_DRINKS"],
                "attributes": ["GENERAL", "PRICES", "COMFORT", "CLEANLINESS", "QUALITY", "DESIGN_FEATURES",
                               "STYLE_OPTIONS", "MISCELLANEOUS"]
            },
        }
        polarities = ["positive", "negative", "neutral"]
        if self.config.name == "restaurants":  # This is the name of the configuration selected in BUILDER_CONFIGS above
            features = datasets.Features(
                {
                    "reviewId": datasets.Value(dtype="string"),
                    "sentences": [
                        {
                            "sentenceId": datasets.Value("string"),
                            "text": datasets.Value("string"),
                            "opinions": [
                                {
                                    "target": datasets.Value("string"),
                                    "category": {
                                        "entity": datasets.Value("string"),
                                        "attribute": datasets.Value("string")
                                    },
                                    "polarity": datasets.Value("string"),
                                    "from": datasets.Value("string"),
                                    "to": datasets.Value("string"),
                                }
                            ]
                        }
                    ]
                }
            )
        elif self.config.name == "laptops":
            features = datasets.Features(
                {
                    "reviewId": datasets.Value(dtype="string"),
                    "sentences": [
                        {
                            "sentenceId": datasets.Value("string"),
                            "text": datasets.Value("string"),
                            "opinions": [
                                {
                                    "category": {
                                        "entity": datasets.Value("string"),
                                        "attribute": datasets.Value("string")
                                    },
                                    "polarity": datasets.Value("string"),
                                }
                            ]
                        }
                    ]
                }
            )
        elif self.config.name == "hotels":
            features = datasets.Features(
                {
                    "reviewId": datasets.Value(dtype="string"),
                    "sentences": [
                        {
                            "sentenceId": datasets.Value("string"),
                            "text": datasets.Value("string"),
                            "opinions": [
                                {
                                    "target": datasets.Value("string"),
                                    "category": {
                                        "entity": datasets.Value("string"),
                                        "attribute": datasets.Value("string")
                                    },
                                    "polarity": datasets.Value("string"),
                                    "from": datasets.Value("string"),
                                    "to": datasets.Value("string"),
                                }
                            ]
                        }
                    ]
                }
            )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        urls = _URLS[self.config.name]
        data_dir = dl_manager.download_and_extract(urls)
        if self.config.name in ["restaurants", "laptops"]:
            return [
                datasets.SplitGenerator(
                    name=datasets.Split("trial"),
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "filepath": data_dir['trial'],
                        "split": "trial",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "filepath": data_dir['train'],
                        "split": "train",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "filepath": data_dir['test'],
                        "split": "test"
                    },
                ),
            ]
        elif self.config.name == "hotels":
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "filepath": data_dir['test'],
                        "split": "test"
                    },
                ),
            ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `id_` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
        tree = ET.parse(filepath)
        root = tree.getroot()
        for id_, review in enumerate(root.iter("Review")):
            reviewId = review.attrib.get("rid")
            sentences = []
            for sentence in review.iter("sentence"):
                sentence_dict = {}
                sentence_dict["sentenceId"] = sentence.get("id")
                sentence_dict["text"] = sentence.find("text").text
                opinions = []
                for opinion in sentence.iter("Opinion"):
                    opinion_dict = opinion.attrib
                    opinion_dict["category"] = dict(zip(["entity", "attribute"], opinion_dict["category"].split("#")))
                    opinions.append(opinion_dict)
                sentence_dict["opinions"] = opinions
                sentences.append(sentence_dict)
            yield id_, {
                "reviewId": reviewId,
                "sentences": sentences
            }