|
import re
|
|
|
|
from datasets import DatasetInfo, GeneratorBasedBuilder, Split, SplitGenerator, load_dataset, Features, Value
|
|
|
|
|
|
class GenterDataset(GeneratorBasedBuilder):
|
|
"""
|
|
This dataset filters entries from BookCorpus based on provided indices in the Geneutral dataset.
|
|
"""
|
|
|
|
_CITATION = """
|
|
@misc{drechsel2025gradiendmonosemanticfeaturelearning,
|
|
title={{GRADIEND}: Monosemantic Feature Learning within Neural Networks Applied to Gender Debiasing of Transformer Models},
|
|
author={Jonathan Drechsel and Steffen Herbold},
|
|
year={2025},
|
|
eprint={2502.01406},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.LG},
|
|
url={https://arxiv.org/abs/2502.01406},
|
|
}
|
|
"""
|
|
|
|
def _info(self):
|
|
return DatasetInfo(
|
|
description="This dataset consists of template sentences associating first names ([NAME]) with third-person singular pronouns ([PRONOUN])",
|
|
features=Features({
|
|
"index": Value("int32"),
|
|
"text": Value("string"),
|
|
"masked": Value("string"),
|
|
"label": Value("string"),
|
|
"name": Value("string"),
|
|
"pronoun": Value("string"),
|
|
"pronoun_count": Value("uint8"),
|
|
}),
|
|
supervised_keys=None,
|
|
citation=self._CITATION,
|
|
)
|
|
|
|
def _split_generators(self, dl_manager):
|
|
|
|
indices_files = {}
|
|
for split in ["train", "val", "test"]:
|
|
index_file_url = f"https://huggingface.co./datasets/aieng-lab/genter/resolve/main/genter_indices_{split}.csv"
|
|
|
|
indices_file = dl_manager.download_and_extract(index_file_url)
|
|
indices_files[split] = indices_file
|
|
|
|
|
|
print("Loading BookCorpus dataset...")
|
|
bookcorpus = load_dataset('bookcorpus', trust_remote_code=True)['train']
|
|
print("BookCorpus dataset loaded.")
|
|
|
|
return [
|
|
SplitGenerator(name=Split.TRAIN, gen_kwargs={"indices_file": indices_files['train'], "bookcorpus": bookcorpus}),
|
|
SplitGenerator(name=Split.VALIDATION, gen_kwargs={"indices_file": indices_files['val'], "bookcorpus": bookcorpus}),
|
|
SplitGenerator(name=Split.TEST, gen_kwargs={"indices_file": indices_files['test'], "bookcorpus": bookcorpus}),
|
|
]
|
|
|
|
def _generate_examples(self, indices_file: str, bookcorpus):
|
|
"""
|
|
Generate examples by filtering the BookCorpus dataset using provided indices.
|
|
"""
|
|
try:
|
|
import pandas as pd
|
|
df = pd.read_csv(indices_file)
|
|
except ImportError:
|
|
raise ImportError("Please install pandas to generate GENTER.")
|
|
|
|
|
|
for _, sample in df.iterrows():
|
|
idx = sample['index']
|
|
name = sample['name']
|
|
pronoun = sample['pronoun']
|
|
assert pronoun in {'he', 'she'}
|
|
label = 'M' if pronoun == 'she' else 'F'
|
|
|
|
text = bookcorpus[idx]['text']
|
|
|
|
masked = re.sub(rf'\b{name}\b', '[NAME]', text)
|
|
|
|
pronoun_count = len(re.findall(rf'\b{pronoun}\b', text))
|
|
masked = re.sub(rf'\b{pronoun}\b', '[PRONOUN]', masked)
|
|
|
|
yield idx, {
|
|
"index": idx,
|
|
"text": text,
|
|
"masked": masked,
|
|
"label": label,
|
|
"name": name,
|
|
"pronoun": pronoun,
|
|
"pronoun_count": pronoun_count,
|
|
} |