Datasets:

Languages:
English
ArXiv:
License:
genter / genter.py
jdrechsel's picture
Upload genter.py
d0e4f47 verified
raw
history blame
3.68 kB
import re
from datasets import DatasetInfo, GeneratorBasedBuilder, Split, SplitGenerator, load_dataset, Features, Value
class GenterDataset(GeneratorBasedBuilder):
"""
This dataset filters entries from BookCorpus based on provided indices in the Geneutral dataset.
"""
_CITATION = """
@misc{drechsel2025gradiendmonosemanticfeaturelearning,
title={{GRADIEND}: Monosemantic Feature Learning within Neural Networks Applied to Gender Debiasing of Transformer Models},
author={Jonathan Drechsel and Steffen Herbold},
year={2025},
eprint={2502.01406},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2502.01406},
}
"""
def _info(self):
return DatasetInfo(
description="This dataset consists of template sentences associating first names ([NAME]) with third-person singular pronouns ([PRONOUN])",
features=Features({
"index": Value("int32"),
"text": Value("string"),
"masked": Value("string"),
"label": Value("string"),
"name": Value("string"),
"pronoun": Value("string"),
"pronoun_count": Value("uint8"),
}),
supervised_keys=None,
citation=self._CITATION,
)
def _split_generators(self, dl_manager):
# URL for your indices file hosted on Hugging Face
indices_files = {}
for split in ["train", "val", "test"]:
index_file_url = f"https://huggingface.co./datasets/aieng-lab/genter/resolve/main/genter_indices_{split}.csv"
# Download the indices file
indices_file = dl_manager.download_and_extract(index_file_url)
indices_files[split] = indices_file
# Load BookCorpus dataset
print("Loading BookCorpus dataset...")
bookcorpus = load_dataset('bookcorpus', trust_remote_code=True)['train']
print("BookCorpus dataset loaded.")
return [
SplitGenerator(name=Split.TRAIN, gen_kwargs={"indices_file": indices_files['train'], "bookcorpus": bookcorpus}),
SplitGenerator(name=Split.VALIDATION, gen_kwargs={"indices_file": indices_files['val'], "bookcorpus": bookcorpus}),
SplitGenerator(name=Split.TEST, gen_kwargs={"indices_file": indices_files['test'], "bookcorpus": bookcorpus}),
]
def _generate_examples(self, indices_file: str, bookcorpus):
"""
Generate examples by filtering the BookCorpus dataset using provided indices.
"""
try:
import pandas as pd
df = pd.read_csv(indices_file)
except ImportError:
raise ImportError("Please install pandas to generate GENTER.")
# Filter BookCorpus based on indices and yield examples
for _, sample in df.iterrows():
idx = sample['index']
name = sample['name']
pronoun = sample['pronoun']
assert pronoun in {'he', 'she'}
label = 'M' if pronoun == 'she' else 'F'
text = bookcorpus[idx]['text']
masked = re.sub(rf'\b{name}\b', '[NAME]', text)
pronoun_count = len(re.findall(rf'\b{pronoun}\b', text))
masked = re.sub(rf'\b{pronoun}\b', '[PRONOUN]', masked)
yield idx, {
"index": idx,
"text": text,
"masked": masked,
"label": label,
"name": name,
"pronoun": pronoun,
"pronoun_count": pronoun_count,
}