File size: 5,475 Bytes
507bf63 3febd65 507bf63 9c11dbe 4f492f1 507bf63 4254220 507bf63 144a86e 507bf63 dd1e8fe a9343a1 507bf63 dd1e8fe 3febd65 507bf63 4f492f1 507bf63 14febf7 507bf63 14febf7 507bf63 144a86e 507bf63 dd1e8fe a9343a1 3febd65 4254220 507bf63 dd1e8fe 3febd65 14febf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
import csv
import json
import os
import datasets
_CITATION = """\
@misc{esuli2024invalsi,
title={The Invalsi Benchmark: measuring Language Models Mathematical and Language understanding in Italian},
author={Andrea Esuli and Giovanni Puccetti},
year={2024},
eprint={2403.18697},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DESCRIPTION = """\
This new dataset is designed to measure Language Models mathematical and language understanding in Italian.
"""
_HOMEPAGE = ""
_LICENSE = "CC BY 4.0"
_URLS = {
# "mate": "https://huggingface.co./datasets/ai4text/Invalsi/blob/main/invalsi_ita_data.zip",
# "ita": "https://huggingface.co./datasets/ai4text/Invalsi/blob/main/invalsi_mate_data.zip",
"mate": "./invalsi_mate_data.zip",
"ita": "./invalsi_ita_data.zip",
}
class invalsi(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="mate", version=VERSION, description="Mathematical Understanding"),
datasets.BuilderConfig(name="ita", version=VERSION, description="Italian Understanding"),
]
DEFAULT_CONFIG_NAME = "mate"
def _info(self):
if self.config.name == "mate":
features = datasets.Features(
# TODO: add after the image col is there "immagine": datasets.Value("string"),
{
"testo": datasets.Value("string"),
"domanda": datasets.Value("string"),
"risposta": datasets.Value("string"),
"test_id": datasets.Value("string"),
"tipo": datasets.Value("string"),
"alt1": datasets.Value("string"),
"alt2": datasets.Value("string"),
"alt3": datasets.Value("string"),
}
)
elif self.config.name == "ita":
features = datasets.Features(
{
"testo": datasets.Value("string"),
"domanda": datasets.Value("string"),
"risposta": datasets.Value("string"),
"immagine": datasets.Value("string"),
"test_id": datasets.Value("string"),
"tipo": datasets.Value("string"),
"alt1": datasets.Value("string"),
"alt2": datasets.Value("string"),
"alt3": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = _URLS[self.config.name]
data_dir = dl_manager.extract(urls)
if self.config.name == "mate":
data_file = "invalsi_mate_data/invalsi_mate_clean.csv"
elif self.config.name == "ita":
data_file = "invalsi_ita_data/invalsi_ita_clean.csv"
return [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, data_file),
"split": "val",
},
),
]
def _generate_examples(self, filepath, split):
ds = datasets.load_dataset("csv", data_files=filepath)["train"]
for key, row in enumerate(ds):
# data = json.loads(row)
if self.config.name == "mate":
# Yields examples as (key, example) tuples
out = {
"testo": row["testo"],
"domanda": row["domanda"],
"risposta": row["risposta"],
"test_id": row["test_id"],
"tipo": row["tipo"],
"alt1": row["alt1"],
"alt2": row["alt2"],
"alt3": row["alt3"],
# TODO: add after the image col is there "immagine": datasets.Value("string"),
# "immagine": row["image_file_names"],
}
yield key, out
elif self.config.name == "ita":
yield key, {
"testo": row["testo"],
"domanda": row["domanda"],
"risposta": row["risposta"],
"immagine": row["image_file_names"],
"test_id": row["test_id"],
"tipo": row["tipo"],
"alt1": row["alt1"],
"alt2": row["alt2"],
"alt3": row["alt3"],
}
|