""" Kathbath Dataset""" import csv import os import tarfile import datasets from datasets.utils.py_utils import size_str from .languages import LANGUAGES from .release_stats import STATS _CITATION = """\ @misc{https://doi.org/10.48550/arxiv.2208.11761, doi = {10.48550/ARXIV.2208.11761}, url = {https://arxiv.org/abs/2208.11761}, author = {Javed, Tahir and Bhogale, Kaushal Santosh and Raman, Abhigyan and Kunchukuttan, Anoop and Kumar, Pratyush and Khapra, Mitesh M.}, title = {IndicSUPERB: A Speech Processing Universal Performance Benchmark for Indian languages}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } """ _HOMEPAGE = "https://ai4bharat.iitm.ac.in/indic-superb/" _LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/" _DATA_URL = "https://huggingface.co./datasets/ai4bharat/kathbath/resolve/main/data" class KathbathConfig(datasets.BuilderConfig): """BuilderConfig for Kathbath.""" def __init__(self, name, version, **kwargs): self.language = kwargs.pop("language", None) self.release_date = kwargs.pop("release_date", None) self.num_clips = kwargs.pop("num_clips", None) self.num_speakers = kwargs.pop("num_speakers", None) self.total_hr = kwargs.pop("total_hr", None) self.size_bytes = kwargs.pop("size_bytes", None) self.size_human = size_str(self.size_bytes) description = ( f"Kathbath speech to text dataset in {self.language} released on {self.release_date}. " f"The dataset comprises {self.total_hr} hours of transcribed speech data" ) super(KathbathConfig, self).__init__( name=name, version=datasets.Version(version), description=description, **kwargs, ) class Kathbath(datasets.GeneratorBasedBuilder): DEFAULT_CONFIG_NAME = "_all_" BUILDER_CONFIGS = [ KathbathConfig( name=lang, version=STATS["version"], language=LANGUAGES[lang], release_date=STATS["date"], # num_clips=lang_stats["clips"], # num_speakers=lang_stats["users"], total_hr=float(lang_stats["totalHrs"]) if lang_stats["totalHrs"] else None, # size_bytes=int(lang_stats["size"]) if lang_stats["size"] else None, ) for lang, lang_stats in STATS["locales"].items() ] def _info(self): total_languages = len(STATS["locales"]) total_hours = self.config.total_hr description = ( "LibriVox-Indonesia is a speech dataset generated from LibriVox with only languages from Indonesia." f"The dataset currently consists of {total_hours} hours of speech " f"in {total_languages} languages, but more voices and languages are always added." ) features = datasets.Features( { "path": datasets.Value("string"), "language": datasets.Value("string"), "speaker": datasets.Value("string"), "sentence": datasets.Value("string"), "audio": datasets.features.Audio(sampling_rate=16000) } ) return datasets.DatasetInfo( description=description, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, version=self.config.version, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" dl_manager.download_config.ignore_url_params = True audio_path = {} local_extracted_archive = {} metadata_path = {} split_type = {"train": datasets.Split.TRAIN, "valid": datasets.Split.VALIDATION, "test_unknown": datasets.Split.TEST, "test_known": datasets.Split.TEST} for split in split_type: if split == 'train': audio_paths = [ f"{_DATA_URL}/audio_{split}.tar.partaa", f"{_DATA_URL}/audio_{split}.tar.partab", f"{_DATA_URL}/audio_{split}.tar.partac", ] audio_path[split] = dl_manager.download(audio_paths) for path in audio_path[split]: try: local_extracted_archive[split] = dl_manager.extract(audio_path[split]) if not dl_manager.is_streaming else None except tarfile.ReadError: pass else: audio_paths = [f"{_DATA_URL}/audio_{split}.tar"] audio_path[split] = dl_manager.download(audio_paths) local_extracted_archive[split] = dl_manager.extract(audio_path[split]) if not dl_manager.is_streaming else None metadata_path[split] = dl_manager.download(f"{_DATA_URL}/metata_{split}.tsv") path_to_clips = "kb_data_clean_m4a" return [ datasets.SplitGenerator( name=split_type[split], gen_kwargs={ "local_extracted_archive": local_extracted_archive[split], "audio_files": dl_manager.iter_archive(audio_path[split]), "metadata_path": metadata_path[split], "path_to_clips": path_to_clips, }, ) for split in split_type ] def _generate_examples( self, local_extracted_archive, audio_files, metadata_path, path_to_clips, ): """Yields examples.""" data_fields = list(self._info().features.keys()) metadata = {} with open(metadata_path, "r", encoding="utf-8") as f: reader = csv.DictReader(f, delimiter="\t") for row in reader: if self.config.name == "_all_" or self.config.name == row["language"]: row["path"] = os.path.join(path_to_clips, row["path"]) # if data is incomplete, fill with empty values for field in data_fields: if field not in row: row[field] = "" metadata[row["path"]] = row id_ = 0 for path in audio_files: print(path) if path in metadata: result = dict(metadata[path]) # set the audio feature and the path to the extracted file path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path result["audio"] = {"path": path, "bytes": f.read()} result["path"] = path yield id_, result id_ += 1