from openai import OpenAI client = OpenAI(api_key = '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') import pandas as pd from huggingface_hub import hf_hub_download def compute(params): public_score = 0 private_score = 0 solution_file = hf_hub_download( repo_id=params.competition_id, filename="solution.csv", token=params.token, repo_type="dataset", ) solution_df = pd.read_csv(solution_file) submission_filename = f"submissions/{params.team_id}-{params.submission_id}.csv" submission_file = hf_hub_download( repo_id=params.competition_id, filename=submission_filename, token=params.token, repo_type="dataset", ) submission_df = pd.read_csv(submission_file) submitted_answer = str(submission_df.iloc[0]['pred']) gt = str(solution_df.iloc[0]['pred']) prompt=f"Give me a score from 1 to 10 (higher is better) judging how similar these two captions are. Caption one: {submitted_answer}. Caption two: {gt}\nScore:" try: response = client.completions.create( engine="gpt-3.5-turbo-instruct", prompt=prompt, temperature=0, max_tokens=1, ) public_score = int(response.choices[0].text.strip()) except: print("Error w/ api") private_score = public_score metric_dict = {"public_score": {"metric1": public_score}, "private_score": {"metric1": private_score} } return metric_dict