|
import openai |
|
openai.api_key = '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' |
|
|
|
import pandas as pd |
|
from huggingface_hub import hf_hub_download |
|
|
|
def compute(params): |
|
public_score = 0 |
|
private_score = 0 |
|
|
|
solution_file = hf_hub_download( |
|
repo_id=params.competition_id, |
|
filename="solution.csv", |
|
token=params.token, |
|
repo_type="dataset", |
|
) |
|
|
|
solution_df = pd.read_csv(solution_file) |
|
|
|
submission_filename = f"submissions/{params.team_id}-{params.submission_id}.csv" |
|
submission_file = hf_hub_download( |
|
repo_id=params.competition_id, |
|
filename=submission_filename, |
|
token=params.token, |
|
repo_type="dataset", |
|
) |
|
submission_df = pd.read_csv(submission_file) |
|
|
|
submitted_answer = str(submission_df.iloc[0]['pred']) |
|
gt = str(solution_df.iloc[0]['pred']) |
|
|
|
prompt=f"Give me a score from 1 to 10 (higher is better) judging how similar these two captions are. Caption one: {submitted_answer}. Caption two: {gt}\nScore:" |
|
|
|
response = openai.Completion.create( |
|
engine="text-davinci-003", |
|
prompt=prompt, |
|
temperature=0, |
|
max_tokens=1, |
|
) |
|
|
|
public_score = int(response.choices[0].text.strip()) |
|
private_score = public_score |
|
|
|
metric_dict = { |
|
"public_score": {"metric1": public_score}, |
|
"private_score": {"metric1": private_score} |
|
} |
|
|
|
return metric_dict |