File size: 3,903 Bytes
a86c725
9628ad8
a86c725
 
 
 
 
51ae812
dd6b4ee
 
 
 
51ae812
 
dd6b4ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a86c725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b391ad
ef24038
 
 
 
 
 
 
a86c725
 
1b391ad
 
 
ef24038
a86c725
ef24038
 
982f955
ceaf162
1b391ad
ef24038
 
31bc736
ef24038
 
 
 
 
 
 
 
 
 
31bc736
 
 
ef24038
 
 
 
 
a86c725
51ae812
ef24038
 
 
a86c725
5541e54
a86c725
ef24038
 
74f67ec
51ae812
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os
from openai import OpenAI
if "OPENAI" in os.environ:
    pass
else:
    print('Doesn\'t find OPENAI')
client = OpenAI(api_key = os.environ['OPENAI'])

import pandas as pd
from huggingface_hub import hf_hub_download

def compute(params):
    public_score = 0
    private_score = 0

    solution_file = hf_hub_download(
        repo_id=params.competition_id,
        filename="solution.csv",
        token=params.token,
        repo_type="dataset",
    )

    solution_df = pd.read_csv(solution_file)

    submission_filename = f"submissions/{params.team_id}-{params.submission_id}.csv"
    submission_file = hf_hub_download(
        repo_id=params.competition_id,
        filename=submission_filename,
        token=params.token,
        repo_type="dataset",
    )
    submission_df = pd.read_csv(submission_file)

    public_ids = solution_df[solution_df.split == "public"][params.submission_id_col].values
    private_ids = solution_df[solution_df.split == "private"][params.submission_id_col].values

    public_solution_df = solution_df[solution_df[params.submission_id_col].isin(public_ids)]
    public_submission_df = submission_df[submission_df[params.submission_id_col].isin(public_ids)]

    private_solution_df = solution_df[solution_df[params.submission_id_col].isin(private_ids)]
    private_submission_df = submission_df[submission_df[params.submission_id_col].isin(private_ids)]

    public_solution_df = public_solution_df.sort_values(params.submission_id_col).reset_index(drop=True)
    public_submission_df = public_submission_df.sort_values(params.submission_id_col).reset_index(drop=True)

    private_solution_df = private_solution_df.sort_values(params.submission_id_col).reset_index(drop=True)
    private_submission_df = private_submission_df.sort_values(params.submission_id_col).reset_index(drop=True)



    # # METRICS Calculation Evaluation
    # # _metric = SOME METRIC FUNCTION
    # def _metric(outputs, targets):
    #     # input example: public_solution_df[target_cols], public_submission_df[target_cols]
        
    #     score = 0.5
    #     return score

    
    print('public_solution_df', public_solution_df)
    print('private_solution_df', private_solution_df)
    
    ## LLM Scoring Evaluation
    def _metric(outputs, targets):
        # inputs: public_solution_df[target_cols], public_submission_df[target_cols]
        # output: score
        for row, output in outputs.iterrows():
            print('outputs type', type(outputs), 'targets type', type(outputs))
            print('output', output)
            answer = output['pred']
            label = str(targets.iloc[row]['pred'])
            print('answer', answer)
            
            prompt=f"Give me a score from 1 to 10 (higher is better) judging how similar these two captions are. Caption one: {answer}. Caption two: {label}\nScore:"
            
            try:
                response = client.completions.create(
                    engine="gpt-3.5-turbo-instruct",
                    prompt=prompt,
                    temperature=0,
                    max_tokens=1,
                )
                eval_result = response.choices[0].text.strip()
                print('eval_result', eval_result)
                score = int(eval_result)
                
            except:
                print("Error: API Calling")
                return

        return score

    target_cols = [col for col in solution_df.columns if col not in [params.submission_id_col, "split"]]
    public_score = _metric(public_solution_df[target_cols], public_submission_df[target_cols])
    private_score = _metric(private_solution_df[target_cols], private_submission_df[target_cols])

    metric_name = "metric1"
    
    metric_dict = {"public_score": {metric_name: public_score},
                   "private_score": {metric_name: private_score}
                   }

    return metric_dict