--- configs: - config_name: default data_files: - split: train path: "data/train_instances.json" - split: dev path: "data/dev_instances.json" - split: test path: "data/test_instances.json" - config_name: has_html data_files: - split: train path: "data/train_instances_with_html.json" - split: dev path: "data/dev_instances_with_html.json" - split: test path: "data/test_instances_with_html.json" --- # Preprocessed QASPER dataset Working doc: https://docs.google.com/document/d/1gYPhPNJ5LGttgjix1dwai8pdNcqS6PbqhsM7W0rhKNQ/edit?usp=sharing Original: - Dataset: https://github.com/allenai/qasper-led-baseline - Baseline repo: https://github.com/allenai/qasper-led-baseline - HF: https://huggingface.co./datasets/allenai/qasper Differences of our implementation over the original implementation: 1. We use the dataset provided at https://huggingface.co./datasets/allenai/qasper since it doesn't require manually downloading files. 2. We remove usage of `allennlp` since the Python package cannot be installed anymore. 3. We add baselines to [qasper/models](qasper/models/). Currently, we have - QASPER (Longformer Encoder Decoder) - GPT-3.5-Turbo - TODO: RAG (with R=TF-IDF or Contriever) implemented in LangChain? 4. We replace `allennlp` special tokens with the special tokens of the HF transformer tokenizer: - paragraph separator: '' -> tokenizer.sep_token - sequence pair start tokens: _tokenizer.sequence_pair_start_tokens -> tokenizer.bos_token ## Usage ``` from datasets import load_dataset dataset = load_dataset("ag2435/qasper") ```