abdullah's picture
Add files using upload-large-folder tool
cee63d3 verified
raw
history blame
41.8 kB
1
00:00:04,940 --> 00:00:07,660
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ุญู…ุฏ ู„ู„ู‡ ุฑุจ ุงู„ุนุงู„ู…ูŠู†
2
00:00:07,660 --> 00:00:10,500
ูˆุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ุนู„ู‰ ุณูŠุฏู†ุง ู…ุญู…ุฏ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡
3
00:00:10,500 --> 00:00:17,340
ุฃุฌู…ุนูŠู† ู‡ุฐู‡ ู‡ูŠ ุงู„ู…ุญุงุถุฑุฉ ุฑู‚ู… 23 ููŠ ู…ุณุงู‚ ุชุญู„ูŠู„ ุญู‚ูŠู‚ูŠ
4
00:00:17,340 --> 00:00:22,200
ู„ู„ุทู„ุงุจ ูˆุงู„ุทุงู„ุจุงุช ุงู„ุฌุงู…ุนุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ู‚ุณู… ุงู„ุฑูŠุงุถูŠุงุช
5
00:00:22,200 --> 00:00:27,900
ูƒู„ูŠุฉ ุงู„ุนู„ูˆู…ุŒ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ูŠูˆู… ู‡ูŠ ุนุจุงุฑุฉ ุนู†
6
00:00:27,900 --> 00:00:33,180
ุชูƒู…ู„ุฉ ู„ู€ section 8.3 ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู…ู† .. ู…ู†
7
00:00:33,180 --> 00:00:36,580
.. ู…ู† ู‡ุฐุง .. ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ chapterุŒ ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ู…ู† ู‡ุฐุง
8
00:00:36,580 --> 00:00:39,320
ุงู„ู€ sectionุŒ ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ุชุญุฏุซู†ุง ุนู† ุงู„ู€ exponential
9
00:00:39,320 --> 00:00:44,670
function ูˆูƒูŠู ุฃุซุจุชู†ุง ูˆุฌูˆุฏู‡ุงุŒ ูˆุฃุฎุฐู†ุง ุฎูˆุงุตู‡ุงุŒ ุงู„ุขู† ุจุฏู†ุง
10
00:00:44,670 --> 00:00:47,910
ู†ุญูƒูŠ ุนู† ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ section ุงู„ู„ูŠ ู‡ูˆ
11
00:00:47,910 --> 00:00:51,050
ุงู„ู€ logarithmic functionุŒ ุงู„ู€ logarithmic function
12
00:00:51,050 --> 00:00:55,290
ุงู„ู„ูŠ ู‡ูˆ ู†ุดูˆู ูƒูŠู ุจุฏู†ุง ู†ุซุจุช ูˆุฌูˆุฏู‡ุง ูˆูƒูŠู ุงู„ู„ูŠ ู‡ูˆ
13
00:00:55,290 --> 00:01:00,410
ู†ุงุฎุฏ ุฎูˆุงุตู‡ุง ุจู†ูุณ ุงู„ุจู†ุงุก ุงู„ู„ูŠ ุฃูˆ ู†ุจู†ููŠ ุงู„ุจู†ุงุก ุงู„ู„ูŠ
14
00:01:00,410 --> 00:01:05,820
ุจู†ูŠู†ุงู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉุŒ ุงู„ุขู† ู„ู…ุง ุญูƒูŠู†ุง ุนู† ุงู„ู€
15
00:01:05,820 --> 00:01:10,020
exponential function EุŒ ุฌูŠู†ุง ุฃู† ุงู„ู€ exponential E
16
00:01:10,020 --> 00:01:12,780
is strictly increasing differentiable function
17
00:01:12,780 --> 00:01:18,160
with domain R and range ุงู„ู„ูŠ ู‡ูˆ Y ุฃูƒุจุฑ ู…ู† 0ุŒ ูŠุนู†ูŠ
18
00:01:18,160 --> 00:01:22,480
ู„ู…ุง ุญูƒูŠู†ุง ุนู† ุงู„ู€ EุŒ ุญูƒูŠู†ุง ุนู† ุงู„ู€ E ู…ู† R ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€
19
00:01:22,480 --> 00:01:26,600
exponential ู„ุนู†ุฏ ุงู„ูุชุฑุฉ 0 ูˆ โˆžุŒ ู‡ุฐู‡ ุงู„ู€
20
00:01:26,600 --> 00:01:31,560
function ู‡ูŠ rangeู‡ุง ูˆู‡ูŠ domainู‡ุง ูˆูƒุงู†ุช strictly
21
00:01:31,560 --> 00:01:35,700
increasingุŒ Strictly increasing ู…ุนู†ุงุชู‡ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ
22
00:01:35,700 --> 00:01:40,020
ุนู† 1-1ุŒ ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ููŠ ู„ู‡ุง ุงู„ู€ function ู‡ุฐู‡ on
23
00:01:40,020 --> 00:01:43,940
to twoุŒ ูˆูƒุงู†ุช differentiableุŒ ุงู„ุขู† ุงู„ู€ function ุงู„ู„ูŠ ู‡ูŠ
24
00:01:43,940 --> 00:01:46,840
ุงู„ู€ exponential ุทุจุนู‹ุง ู…ุง ุฃู†ุชู… ุนุงุฑููŠู† ูƒูŠู ุฑุณู…ุชู‡ุง ู„ูˆ
25
00:01:46,840 --> 00:01:50,460
ุฌูŠู†ุง ุฌุฑุจู†ุง ู†ุฑุณู…ู‡ุง ู‡ู†ู„ุงู‚ูŠ ุงู„ุฑุณู…ุฉ ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐู‡ ุงู„ู„ูŠ
26
00:01:50,460 --> 00:01:56,180
ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุฑุณู…ุฉ ุงู„ู€ exponentialุŒ ุงู„ุขู† ุฃู†ุง ุจุฏูŠ ุขุฌูŠ
27
00:01:56,180 --> 00:02:00,300
ุงู„ู„ูŠ ู‡ูˆ ู…ู† ุฎู„ุงู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ function ุงู„ู€ exponential
28
00:02:00,300 --> 00:02:05,980
ุฃุนุฑู ุงู„ู€ inverse ู„ู‡ุง ูˆุฃุณู…ูŠู‡ ุงู„ู„ูŠ ู‡ูˆ logarithmic
29
00:02:05,980 --> 00:02:10,860
function ุฃูˆ ุจุฏูŠ ุฃุณู…ูŠู‡ ุงู„ู€ logarithm ุงู„ุทุจูŠุนูŠ ุงู„ู„ูŠ ู‡ูŠ
30
00:02:10,860 --> 00:02:16,020
ุงู„ู€ ln functionุŒ ู…ุดุฑูˆุน ุงู„ูƒู„ุงู… ุงู‡ ู„ุฅู† ุงูŠู‡ ุนุจุงุฑุฉ ุนู†
31
00:02:16,020 --> 00:02:19,240
function one to one ูˆ one to oneุŒ ุฅุฐุง ุตุงุฑ ุงู„ู€
32
00:02:19,240 --> 00:02:23,580
inverse ู„ู‡ุง ู…ูˆุฌูˆุฏ ู„ุฃู†ู‡ุง strictly increasingุŒ ุฅุฐุง
33
00:02:23,580 --> 00:02:29,560
ุตุงุฑ ุงู„ู€ L ู…ู† ุนู†ุฏ zero ูˆ โˆž ู„ุนู†ุฏ ุงู„ู€ RุŒ ู‡ุงุฏูŠ
34
00:02:29,560 --> 00:02:34,100
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ function ุงู„ุฌุฏูŠุฏุฉ ู‡ูŠ ุงู„ู„ูŠ ุจุฏูŠ ุฃุณู…ูŠู‡ุง ุงู„ู€
35
00:02:34,100 --> 00:02:38,320
logarithmic functionุŒ ูˆู‡ูŠ ุฑุณู…ุชู‡ุง ุงู„ู„ูŠ ุฃู…ุงู…ู†ุง ุงู„ู„ูŠ
36
00:02:38,320 --> 00:02:42,460
ู‡ูŠ ุงู„ู€ inverse ู„ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุจุฏูŠ ุฃุนุฑูู‡ุง ุงู„ุขู†
37
00:02:42,460 --> 00:02:47,000
ูˆุชุนุฑูŠูู‡ุง ุงู„ุขู† ุตุงุฑ ุดุฑุนูŠ ุจู†ุงุก ุนู„ู‰ ูˆุฌูˆุฏ ุงู„ู€ exponential
38
00:02:47,000 --> 00:02:50,930
ุงู„ู„ูŠ ุจุฏูŠ ุฃุนุฑูู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ inverseุŒ ุณุจู‘ุจูŽุชู’ู‡ุง ุงู„ุนู…ู„
39
00:02:50,930 --> 00:02:57,030
ุงู„ู…ุนุฑููŠ ู„ู„ู€ E ู‡ูˆ
40
00:02:57,030 --> 00:03:02,850
ุงู„ู€ Logarithm ุฃูˆ ุงู„ู€ Natural Logarithm ุงู„ู„ูŠ ู‡ูŠ It
41
00:03:02,850 --> 00:03:07,870
will be denoted by L or by lnุŒ ุงู„ุฃูƒุซุฑ ุดูŠูˆุนู‹ุง ุทุจุนู‹ุง
42
00:03:07,870 --> 00:03:11,810
ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† ุงู„ู€ lnุŒ ู„ุฃู† ุจู…ุง ุฃู† ุงู„ู€ E ูˆ L ุงู†ุนูƒุงุณ
43
00:03:11,810 --> 00:03:17,110
ู„ุจุนุถุŒ ุฅุฐุง ุฃูƒูŠุฏ ุงู„ู€ E composite L composite E of X
44
00:03:17,110 --> 00:03:22,920
ู‡ูŠุณุงูˆูŠ ุงู„ู€ X ู„ูƒู„ ุงู„ู€ x ูˆุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ R ู„ุฃู†
45
00:03:22,920 --> 00:03:26,540
ุงู„ู€ E ุจุชุดุชุบู„ ุนู„ู‰ ูƒู„ ุงู„ู€ xุงุช ุงู„ู„ูŠ ููŠ ุงู„ู€ R ู„ุฃู†
46
00:03:26,540 --> 00:03:30,740
ุจูŠู†ู…ุง E composite L of YุŒ E composite L of YุŒ ุงู„ู€ L
47
00:03:30,740 --> 00:03:34,660
ุจุชุดุชุบู„ .. ุจุชุดุชุบู„ ู…ูŠู† ุนู„ู‰ ู…ูŠู† ุจุณ ุนู„ู‰ ุงู„ู€ positiveุŒ E
48
00:03:34,660 --> 00:03:38,240
composite L of Y ุจูŠุณุงูˆูŠ ู„ูƒู„ Y element in R ูˆ Y
49
00:03:38,240 --> 00:03:44,900
ุฃุดู…ู„ู‡ุง ุฃูƒุจุฑ ู…ู† 0ุŒ ุงู„ุขู† connotations .. connotations
50
00:03:44,900 --> 00:03:49,860
ุจู†ุงุก ุนู„ูŠู‡ ุงู„ู€ NุŒ ุงู„ู€ E of X ู„ุฃู† ุงู„ู€ N ู‡ูŠ ุงู„ู€ L ูˆุงู„ู€
51
00:03:49,860 --> 00:03:53,880
E ู‡ูŠ ุงู„ู€ EุŒ ูˆุนู†ุฏูŠ ุงู„ู€ E to the N ุงู„ู„ูŠ ู‡ูˆ ุจุณูˆุก ุงู„ู€ Y
52
00:03:53,880 --> 00:03:57,780
ูˆู‡ูˆ ุจุณูˆุก ุงู„ู€ XุŒ ุจู†ุงุก ุนู„ู‰ ุฃู† ุงู„ูˆุงุญุฏุฉ inverse ู„ู„ุชุงู†ูŠุฉ
53
00:04:01,010 --> 00:04:04,750
ุฃูˆ ูƒู„ ูˆุงุญุฏุฉ inverse ู„ู„ุฃุฎุฑู‰ุŒ ุงู„ู€ logarithm is a
54
00:04:04,750 --> 00:04:08,630
strictly increasing function L with domain ุงู„ู„ูŠ ู‡ูˆ
55
00:04:08,630 --> 00:04:12,150
ู…ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ domain ุงู„ู„ูŠ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุชุนุฑูู†ุง ู‡ูŠูƒ
56
00:04:12,150 --> 00:04:16,210
ุฃุตู„ู‹ุง ุงู„ุขู† ุงู„ู€ derivative of L is given by L prime
57
00:04:16,210 --> 00:04:19,750
of X ุงูŠุด ุจุชุณุงูˆูŠุŸ 1/XุŒ for X ุฃูƒุจุฑ ู…ู† ุตูุฑุŒ ุงู„ุขู†
58
00:04:19,750 --> 00:04:23,430
ุงู„ู€ logarithm satisfy the functional equationุŒ ุชุญู‚ู‚
59
00:04:23,430 --> 00:04:27,010
ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฏุงู„ูŠุฉ ุงู„ุชุงู„ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ L of X ููŠ Y ุจุณุงูˆูŠ
60
00:04:27,010 --> 00:04:31,000
L of X ุฒุงุฆุฏ L of YุŒ for X ุฃูƒุจุฑ ู…ู† ุตูุฑุŒ Y ุฃูƒุจุฑ ู…ู†
61
00:04:31,000 --> 00:04:34,560
ุตูุฑุŒ Y ุฃูƒุจุฑ
62
00:04:34,560 --> 00:04:38,260
ู…ู† ุตูุฑ
63
00:04:38,260 --> 00:04:40,560
Y ุฃูƒุจุฑ ู…ู† ุตูุฑ Y ุฃูƒุจุฑ ู…ู† ุตูุฑ Y ุฃูƒุจุฑ ู…ู† ุตูุฑ Y ุฃูƒุจุฑ
64
00:04:40,560 --> 00:04:40,580
ู…ู† ุตูุฑ Y ุฃูƒุจุฑ ู…ู† ุตูุฑ Y ุฃูƒุจุฑ ู…ู† ุตูุฑ Y ุฃูƒุจุฑ ู…ู†
65
00:04:40,580 --> 00:04:40,640
ุฃูƒุจุฑ ู…ู† ุตูุฑ Y ุฃูƒุจุฑ ู…ู† ุตูุฑ Y ุฃูƒุจุฑ ู…ู† ุตูุฑ Y ุฃูƒุจุฑ
66
00:04:40,640 --> 00:04:40,700
ู…ู† ุตูุฑ Y ุฃูƒุจุฑ ู…ู† ุตูุฑ Y ุฃูƒุจุฑ ู…ู† ุตูุฑ Y ุฃูƒุจุฑ ู…ู†
67
00:04:40,700 --> 00:04:41,020
ุตูุฑ Y ุฃูƒุจุฑ ู…ู† ุตูุฑ Y ุฃูƒุจุฑ ู…ู† ุตูุฑ Y ุฃูƒุจุฑ ู…ู†
68
00:04:41,020 --> 00:04:47,140
ุฃูƒุจุฑ ู…ู† ุตูุฑ Y ุฃูƒุจุฑ ู…ู† ุตูุฑ Y ุฃูƒุจุฑ ู…ู† ุตูุฑ Y ุฃูƒุจุฑุŒ L of
69
00:04:47,140 --> 00:04:51,420
X<sup>R</sup> ุจุณุงูˆูŠ R ู„ู€ L of XุŒ ู„ุฃู† X ุฃูƒุจุฑ ู…ู† 0ุŒ ูˆ R ุงู„ู…ุชุฑ ูƒูŠูˆุŒ
70
00:04:51,420 --> 00:04:54,840
ูƒู„ู‡ู† ุงู„ู„ูŠ ู‡ูŠ ุฎูˆุงุต ุฃู†ุชู… ุจุชุนุฑููˆู‡ุง ู‚ุจู„ ู‡ูŠูƒุŒ ุจุณ ุงู„ุขู†
71
00:04:54,840 --> 00:04:58,440
ุจุฏู†ุง ู†ุจุฑู‡ู†ู‡ู… ูˆู†ุซุจุช ุตุญุชู‡ู…ุŒ limit L of X ู„ู…ุง X ุชุฑูˆุญ
72
00:04:58,440 --> 00:05:01,740
ู„ู€ 0 ู…ู† ุงู„ูŠู…ูŠู† ุจุณุงูˆูŠ -โˆžุŒ and limit L of X
73
00:05:01,740 --> 00:05:07,340
ู„ู…ุง X ุชุฑูˆุญ ู„ู€ โˆž ุจุชุณุงูˆูŠ โˆžุŒ ุฎู„ูŠู†ุง
74
00:05:07,340 --> 00:05:14,840
ู†ุญู† ู†ุดูˆู ู†ุจุฑู‡ู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ู…ุทู„ูˆุจุŒ ุงู„ุขู† ุงู„ู€ L is
75
00:05:14,840 --> 00:05:17,560
strictly increasing with domain X element alone
76
00:05:17,560 --> 00:05:20,880
and range R follows from the fact that E is
77
00:05:20,880 --> 00:05:24,840
strictly increasing with domain R and range ุงู„ู„ูŠ
78
00:05:24,840 --> 00:05:33,320
ู‡ูˆ ุงู„ู„ูŠ ุนู†ุฏูŠุŒ ุงู„ุขู† ุนู†ุฏูŠ ุงู„ู€ L is strictly increasing
79
00:05:33,320 --> 00:05:37,560
ุจู†ุงุก ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุงู„ู€ E ู†ูุณู‡ุง strictly increasingุŒ
80
00:05:37,560 --> 00:05:48,560
ุงู„ุขู† E composite LุŒ E composite L of Y ุงูŠุด ุจุชุณุงูˆูŠุŸ Y
81
00:05:48,560 --> 00:05:55,320
ู„ูƒู„ YุŒ ูˆ Y ุงู„ู…ูˆุฌูˆุฏุฉ ู„ูƒู„ Y element in (0, โˆž)ุŒ
82
00:05:55,320 --> 00:06:00,780
ู…ุธุจูˆุทุŸ ุงู„ุขู† ูุงุถู„ ุงู„ุฌู‡ุชูŠู†ุŒ ุงู„ุขู† ุทุจุนู‹ุง ุงุญู†ุง ุจู†ุนุฑู
83
00:06:00,780 --> 00:06:06,360
ุฃู†ู‡ ู…ู† ุงู„ุฃุตู„ ู…ุฏุงู… ุงู„ู€ E is ุงู„ู„ูŠ ู‡ูˆ differentiableุŒ
84
00:06:06,360 --> 00:06:10,480
ุฃูƒูŠุฏ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ inverse ุฅู„ู‡ุง is differentiable by
85
00:06:10,480 --> 00:06:14,680
theorem 6.9 ูƒุฏู‡ ู…ุด ุนุงุฑู ุงูŠุด ููŠ ุงู„ู„ูŠ ู‡ูˆ chapter 6
86
00:06:14,680 --> 00:06:18,200
ู‚ุฏุงู…ุฉุŒ ุงู„ู€ function ุงู„ู„ูŠ ู‡ูŠ is differentiableุŒ ุงู„ู€
87
00:06:18,200 --> 00:06:20,880
inverse ุฅู„ู‡ุง ุจุฑุถู‡ is differentiable ููŠ ุญุงู„ุฉ ูˆุฌูˆุฏู‡ุง
88
00:06:20,880 --> 00:06:27,480
ุงู„ุขู† E ูุงุถู„ ุงู„ุฌู‡ุชูŠู† ุจูŠุตูŠุฑ ุนู†ุฏูŠ E prime of L of Y
89
00:06:27,480 --> 00:06:36,600
ููŠ L prime of Y ุจุณุงูˆูŠ ุงูŠุดุŸ 1ุŒ ู…ุงุดูŠ ุงู„ุญุงู„ุŒ ุงู„ุขู† ูˆุงุถุญ
90
00:06:36,600 --> 00:06:41,900
ุฃู† ู‡ุฐุง ุญุงุตู„ ุงู„ุถุฑุจ ุตุงุฑ ุฃูƒุจุฑ ู…ู† ู…ูŠู†ุŸ strictly ู…ู† 0
91
00:06:41,900 --> 00:06:47,920
ูˆุจู…ุง ุฃู† ุงู„ู€ E is strictly increasingุŒ ุฃุซุจุชู†ุง E' of
92
00:06:47,920 --> 00:06:53,420
L of Y is strictly ุฃูƒุจุฑ ู…ู† 0ุŒ ุฅุฐุง ุจูŠุธู„ู‡ุง L' of Y is
93
00:06:53,420 --> 00:06:57,180
strictly ุฃูƒุจุฑ ู…ู† 0 ู„ูƒู„ Y ู‡ู†ุงุŒ ุฅุฐุง ุตุงุฑุช ุงู„ู€ L is
94
00:06:57,180 --> 00:07:02,740
strictly increasingุŒ ุงู„ุขู† ุทุจุนู‹ุง ุงู„ู€ domain ู…ุฏุงู… ุฃู† ู‡ุฐู‡
95
00:07:02,740 --> 00:07:07,000
ุงู„ู€ inverse ู„ู€ ุงู„ู€ EุŒ ุงู„ู€ domain ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ inverse ู‡ูˆ
96
00:07:07,000 --> 00:07:11,380
range ุงู„ู€ function ุงู„ุฃุตู„ูŠุฉ ูˆุจูŠุตูŠุฑ sub wave ููŠ
97
00:07:11,380 --> 00:07:18,460
ุงู„ูุฑุนุŒ ุฅุฐุง ุงู„ุขู† ุงุญู†ุง ุฃุซุจุชู†ุง ุฃู† ุงู„ู€ L is strictly
98
00:07:18,460 --> 00:07:23,530
increasingุŒ ุงู„ุขู† ูˆ rangeู‡ุง ุงู„ู„ูŠ ู‡ูˆ ุตุงุฑ domain ุงู„ู„ูŠ
99
00:07:23,530 --> 00:07:28,310
ู‡ูˆ ุฃูˆ range ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ .. ู‡ุฐู‡ ุงู„ู„ูŠ ุตุงุฑ domainู‡ุง
100
00:07:28,310 --> 00:07:32,990
domain ุงู„ู€ L ูˆู‡ุฐู‡ ุตุงุฑุช ุงู„ู„ูŠ ู‡ูˆ range ุงู„ู€ L ุฒูŠ ู…ุง
101
00:07:32,990 --> 00:07:37,330
ู‚ู„ู†ุง ู‚ุจู„ ุจุดูˆูŠุฉ ุฃูˆ ุนู†ุฏูŠ ุงู„ุขู† ุจุฏู†ุง ู†ุซุจุช ุงู„ู„ูŠ ู‡ูˆ
102
00:07:37,330 --> 00:07:42,070
ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู…ู† ุงู„ู†ุธุฑูŠุฉุŒ ุฎู„ูŠู†ูŠ ุฃูƒุชุจ ู‡ู†ุง ุนุดุงู† ู†ุชุฐูƒุฑ
103
00:07:42,070 --> 00:07:48,430
ุงูŠุด ุงู„ู„ูŠ ุจุฏู†ุง ู†ุซุจุชู‡ุŒ ุงู„ุขู† ุจุฏู†ุง ู†ุซุจุชุŒ ุงูŠุด ุฃุซุจุชู†ุง
104
00:07:48,430 --> 00:07:54,230
ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ููŠ ุงู„ู†ุต ุจุชู‚ูˆู„ูŠ L prime of X ุงู„ู„ูŠ ู†ูƒุชุจู‡ู…
105
00:07:54,230 --> 00:07:59,330
ุงู„ู„ูŠ ุจุฏู†ุง ู†ุซุจุชู‡ู… ุนุดุงู† ู†ุชุฐูƒุฑู‡ู…
106
00:07:59,330 --> 00:08:12,240
L prime of X = 1/XุŒ
107
00:08:12,240 --> 00:08:19,680
ุงุซู†ูŠู† ุงู„ู„ูŠ ู‡ูˆ L of XY = L X + L YุŒ ุทุจุนู‹ุง ุงู„ู€ Y
108
00:08:19,680 --> 00:08:25,780
ู‡ู†ุงูƒุŒ L of 1 = 0ุŒ L of E = 1ุŒ ูƒู„ู‡ู…
109
00:08:25,780 --> 00:08:34,440
ุจุณูŠุทุงุชุŒ L prime L of X<sup>R</sup> = R L of XุŒ ูˆ Limit
110
00:08:34,440 --> 00:08:39,720
L of X ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ 0 ู…ู† ุงู„ูŠู…ูŠู† = -โˆž ู„ู…ุง
111
00:08:39,720 --> 00:08:45,140
ู„ู†ู‡ุงูŠุฉุŒ ูˆ Limit ู„ู€ L of X ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ
112
00:08:45,140 --> 00:08:48,520
= โˆžุŒ ุฎู„ูŠู†ูŠ ุฃุดูˆู ุฃู† ุฏูˆู„ ุนู„ู‰ ุงู„ุณุฑูŠุนุŒ ูู†ู‘ูˆุง
113
00:08:48,520 --> 00:08:53,640
ูƒู„ู‡ุง ุดุบู„ุงุช ูŠุนู†ูŠ ุจุฃุนุชู‚ุฏ ุฃู†ู‡ ุณู‡ู„ ุฃู†ูƒ ุชุซุจุชู‡ุง
114
00:08:55,730 --> 00:09:02,210
ุนู†ุฏูŠุŒ ู„ุฃู† ุฒูŠ ู…ุง ุนู…ู„ุช ู‚ุจู„ ุจุดูˆูŠุฉ ุงู„ู„ูŠ ู‡ูˆ ู„ู…ุง ูุถู„ุช ู‡ุฐู‡
115
00:09:02,210 --> 00:09:07,290
ุชูุงุถู„ู‡ุงุŒ E composite L of X ู„ู…ุง ุนู…ู„ุชู‡ุง ู‚ุจู„ ุจุดูˆูŠุฉ
116
00:09:07,290 --> 00:09:14,250
ุงู„ู„ูŠ ู‡ูŠ ูƒุงู†ุช ุนู†ุฏูŠ ู‡ูŠู† ุฃุนู…ู„ E composite L of X ุงู„ูƒู„
117
00:09:14,250 --> 00:09:19,370
ุงู„ู„ูŠ ู‡ูŠ = XุŒ ูุงุถู„ ู‡ุฐุง ูŠุตูŠุฑ E prime
118
00:09:26,060 --> 00:09:29,100
ุจู†ุณุจุฉ ู„ู€ X = ุฃู‚ู„ ุงู„ู€ prime of X
119
00:09:34,780 --> 00:09:40,160
ุงู„ู„ูŠ ู‡ูˆ 1 ุนู„ู‰ ุงู„ู€ E prime of L of XุŒ ุฅุฐุง ุงู„ู€ E
120
00:09:40,160 --> 00:09:44,300
ุงู„ู‚ู„ูŠ prime of X = 1 ุนู„ู‰ E prime composite
121
00:09:44,300 --> 00:09:48,340
L of XุŒ ูˆุงู„ู€ E prime ู‡ูŠ ู†ูุณ ุงู„ู€ E ุฒูŠ ู…ุง ู‚ู„ู†ุงุŒ ุฅุฐุง
122
00:09:48,340 --> 00:09:51,140
ุจูŠุตูŠุฑ 1 ุนู„ู‰ E composite L of XุŒ ุฅู„ู‰ ุงู„ู€ E
123
00:09:51,140 --> 00:09:54,640
composite L of XุŒ ุฒูŠ ู…ุง ู‚ู„ู†ุง ุงูŠุด ุจุชุณุงูˆูŠุŸ ุจุณุงูˆูŠ X
124
00:09:54,640 --> 00:09:57,660
ูุจุชุณุงูˆูŠ 1 ุนู„ู‰ XุŒ ูู€ L prime = 1/XุŒ
125
00:09:57,660 --> 00:10:02,910
ู„ูƒู„ X ููŠ ุงู„ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ูุชุฑุฉ (0, โˆž)ุŒ ู†ูŠุฌูŠ ุงู„ุขู† ู†ุดูˆู
126
00:10:02,910 --> 00:10:06,710
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ุจุนุฏู‡ุงุŒ ุงู„ุฎุงุตูŠุฉ ุงู„ู„ูŠ ุจุนุฏู‡ุงุŒ ุฎู„ูŠู†ุง ู†ุซุจุช
127
00:10:06,710 --> 00:10:12,690
ุงู„ู„ูŠ ู‡ูˆ L of X ููŠ Y = L of X ุฒุงุฆุฏ ู…ูŠู†ุŸ ุฒุงุฆุฏ L of
128
00:10:12,690 --> 00:10:17,270
YุŒ ุจุฑุถู‡ ุงู„ุฅุซุจุงุช ุณู‡ู„ ูˆุงู†ุชุจู‡ูˆุง ู…ุนุงูŠุง ูˆุณู‡ู„ุŒ ุนู†ุฏูŠ ุงู„ุขู†
129
00:10:24,240 --> 00:10:27,240
X > 0, Y > 0, X > 0, Y
130
00:10:27,240 --> 00:10:27,740
> 0, X > 0, Y > 0, X
131
00:10:27,740 --> 00:10:27,900
> 0, X > 0, X > 0, X >
132
00:10:27,900 --> 00:10:28,100
0, X > 0, X > 0, X >
133
00:10:28,100 --> 00:10:28,700
0, X > 0, X > 0, X >
134
00:10:28,700 --> 00:10:28,920
0, X > 0, X > 0, X >
135
00:10:28,920 --> 00:10:32,100
0, X > 0, X > 0, X >
136
00:10:32,100 --> 00:10:43,400
0, X > 0, X > 0, X
137
00:10:43,400 --> 00:10:51,850
> 0ุŒ ู„ุฃู† ุงู„ู€ E ูˆุงู„ู€ L ุงู†ุนูƒุงุณ ุจุนุถุŒ ุงู„ุขู† ู…ู†
138
00:10:51,850 --> 00:10:55,130
ุงู„ุฎุงุตูŠุฉ ุชุจุน ุงู„ู€ exponential ุจุฏู†ุง ู†ุตู„ ู„ู…ูŠู†ุŸ ู„ู„ู€
139
00:10:55,130 --> 00:11:00,970
logarithmicุŒ ุฅุฐุง ุฃุถุฑุจ ู„ู€ X ููŠ Y ุจูŠุทู„ุน ุนู†ุฏ X ููŠ Y
140
00:11:00,970 --> 00:11:05,190
= E of U ููŠ E of VุŒ E of U ููŠ E of V ุงูŠุด
141
00:11:05,190 --> 00:11:10,010
ุจุชุณุงูˆูŠุŸ E of U ุฒุงุฆุฏ V ุฃุซุจุชู†ุงู‡ุง ุฅุฐุงู‹ ู…ู† ู‡ุฐุง ุงู„ูƒู„ุงู…
142
00:11:10,970 --> 00:11:15,270
ุฎุฐ ุงู„ู€ L ู„ู„ุฌู‡ุชูŠู† ู„ุฃู†ู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ inverse ู„ุจุนุถ
143
00:11:15,270 --> 00:11:20,450
ุจูŠุตูŠุฑ ุนู†ุฏูŠ L of X ููŠ Y ุจุณุงูˆูŠ L of E of U ุฒุงุฆุฏ V
144
00:11:20,450 --> 00:11:24,410
ุงู„ู„ูŠ ู‡ูŠ ุฅูŠุด ุจุชุณุงูˆูŠ U ุฒุงุฆุฏ VุŒ U ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† L
145
00:11:24,410 --> 00:11:30,750
of X ูˆ V ุนุจุงุฑุฉ ุนู† L of YุŒ ุฅุฐุง ุฃุซุจุชุช L of X ุฒุงุฆุฏ Y
146
00:11:30,750 --> 00:11:39,370
ููŠ Y ุจุณุงูˆูŠ L of X ุฒุงุฆุฏ L of YุŒ ุงู„ุขู† ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ E
147
00:11:39,370 --> 00:11:47,050
of Zero ุจูŠุณุงูˆูŠ ูˆุงุญุฏุŒ ุฎุฐ ู„ูŠ ุงู„ L ู„ู„ุฌู‡ุชูŠู† ุจูŠุตูŠุฑ L of
148
00:11:47,050 --> 00:11:53,010
E of Zero ุจูŠุณุงูˆูŠ L of ูˆุงุญุฏุŒ ุงู„ L of E of Zero ู‡ุฐูŠูƒ
149
00:11:53,010 --> 00:11:59,450
inverse ุงู„ุชุงู†ูŠุฉ ุจูŠุณุงูˆูŠ ZeroุŒ ู†ูุณ ุงู„ุดูŠุก ุงู„ู€ L of E of
150
00:11:59,450 --> 00:12:07,270
1 ุจูŠุณุงูˆูŠ L of EุŒ ู…ุธุจูˆุทุŸ ุงู„ู€ L of E of 1 ุจูŠุณุงูˆูŠ 1ุŒ
151
00:12:07,270 --> 00:12:12,230
ุจูŠุตูŠุฑ L of E ุจูŠุณุงูˆูŠ 1ุŒ ุจูŠุตูŠุฑ ุฃุซุจุชู†ุง L of E ุจูŠุณุงูˆูŠ 1
152
00:12:12,230 --> 00:12:19,730
ูˆ L of 1 ุจูŠุณุงูˆูŠ 0ุŒ ูˆู‡ุฐุง ุงู„ูƒู„ุงู… ูƒู„ุงู… ุณู‡ู„ุŒ ุทูŠุจ ุจูŠุตูŠุฑ
153
00:12:19,730 --> 00:12:23,710
ุนู„ุงู‚ุฉ ุฃู†ู‡ ุณู‡ู„ ุงู„ู„ูŠ ุจู†ุญูƒูŠู‡ุŒ ุงู„ุขู†
154
00:12:27,210 --> 00:12:32,730
ู†ุฃุชูŠ ู†ุซุจุช ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠ L of X to the R ุจุณุงูˆูŠ
155
00:12:32,730 --> 00:12:37,010
ZeroุŒ ุจุณุงูˆูŠ R ููŠ L of XุŒ ู‡ุฐู‡ ุจุฑุถู‡ ุจู†ุซุจุชู‡ุง By
156
00:12:37,010 --> 00:12:41,910
Mathematical InductionุŒ ุนู…ู„ู†ุงู‡ุง ู‚ุจู„ ู‡ูŠูƒ ุจุงู„ู„ูŠ ู‡ูˆ
157
00:12:41,910 --> 00:12:47,330
ุงู„ section ุงู„ู„ูŠ ู‚ุจู„ู‡ ุฃูˆ ุงู„ู„ูŠ ู‡ูˆ ุงู„ exponential
158
00:12:47,330 --> 00:12:52,830
ุนู„ู‰ ุงู„ุณุฑูŠุน ู†ุดูˆู ุงู„ุชูุงุตูŠู„ ู„ุฃู†ู‡ ุงู„ุชูุงุตูŠู„ ู…ุนุงุฏุฉ
159
00:13:07,050 --> 00:13:11,430
ุงู„ุชูุงุตูŠู„ ุญุชู„ุงู‚ูŠู‡ุง ู…ุนุงุฏุฉ ูุฎู„ูŠู†ูŠ ุจุณุฑุนุฉ ู†ู…ุฑ ุนู„ูŠู‡ุง
160
00:13:11,430 --> 00:13:17,730
ุนู†ุฏูŠ we show by induction L of X ุจุณุงูˆูŠ L of X ุฒูŠ
161
00:13:17,730 --> 00:13:21,850
ู…ุง ู‚ู„ู†ุง ุนุดุงู† ู†ุซุจุชู‡ุง ู‡ุฐู‡ุŒ ุฃุซุจุชู†ุง ุงู„ู„ูŠ ู‚ุจู„ ุจุดูˆูŠุฉุŒ L of
162
00:13:21,850 --> 00:13:27,190
XุŒ ู…ุง ุฃุนุฑูุด ุงู„ุฑู‚ู… ุฃุตู„ุงู‹ุŒ ุฃูุตู„ ูˆู„ุง ู„ุฃุŸ ู„ูƒู† ุจุฏูŠ ุฃูุตู„ ู„ูˆ
163
00:13:27,190 --> 00:13:32,790
ุฅู†ุชูˆ ุนู†ุฏูŠุŒ ู„ูˆ ุฅุชูู‘ู‚ู†ุง ุฃู† ู†ูุตู„ ูˆู„ุง ู„ุฃุŒ L of X ููŠ Y
164
00:13:32,790 --> 00:13:39,580
ุจุณุงูˆูŠ L of X ููŠ L of YุŒ of x was n ุจุณุงูˆูŠ n ููŠ L of x
165
00:13:39,580 --> 00:13:44,060
ุทุจุนุงู‹ for n ุจุชุณุงูˆูŠ ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ a trivialุŒ ู†ูุชุฑุถ
166
00:13:44,060 --> 00:13:48,180
ุฃู†ู‡ุง ุตุญูŠุญุฉ ู„ู€ L ู„ู€ n ุจุชุณุงูˆูŠ k ุจูŠุตูŠุฑ L of x was k
167
00:13:48,180 --> 00:13:53,080
ุจุณุงูˆูŠ k L of xุŒ ุงู„ุขู† ุจุฏู†ุง ู†ุญุณุจ ู„ู€ L of x was k ุฒุงุฆุฏ
168
00:13:53,080 --> 00:13:59,480
ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ ุจุณุงูˆูŠ L of x was k ููŠ xุŒ ู‡ุฐู‡ ุงู„ู€ L ู„ู‡ุง
169
00:13:59,480 --> 00:14:04,760
ุญุณุจ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฎุงุตูŠุฉ ู‡ุฐู‡ุŒ ุจุณุงูˆูŠ L ุงู„ุฃูˆู„ู‰ X plus K ููŠ
170
00:14:04,760 --> 00:14:09,860
L ุงู„ุชุงู†ูŠุฉุŒ L of X ุงู„ู„ูŠ ู‡ูˆ ู…ูุชุฑุถ ุฅู†ู‡ุง ุตุญูŠุญุฉ ุนู„ู‰ K ุฏู‡
171
00:14:09,860 --> 00:14:19,600
ุจุณุงูˆูŠ K ููŠ L of XุŒ ุขุณู ุฒุงุฆุฏุŒ ู‡ุฐู‡ ุจุณุงูˆูŠ K L of X ู„ุฃู†ู‡ุง
172
00:14:19,600 --> 00:14:26,400
ุตุญูŠุญุฉ ู„ู€ K ุฒุงุฆุฏ L of X ูˆูŠุณุงูˆูŠ K ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ L of
173
00:14:26,400 --> 00:14:31,520
XุŒ ุฅุฐุง ุตุงุฑุช ู‡ุฐู‡ ุตุญูŠุญุฉ ุงู„ู„ูŠ ู‡ูŠ L ู„ู€ K ุฒุงุฆุฏ ูˆุงุญุฏุŒ ุฅุฐุง
174
00:14:31,520 --> 00:14:36,760
ุตุงุฑุช ุตุญูŠุญุฉ ู„ูƒู„ ู…ู†ุŒ ู„ูƒู„ N element in N ุญุณุจ ุงู„ู„ูŠ ู‡ูˆ
175
00:14:36,760 --> 00:14:43,080
ุงู„ induction ุงู„ู„ูŠ ุจู†ุญูƒูŠ ููŠู‡ุŒ ุฅุฐุงู‹ ุงู„ุขู† ุฃุซุจุชู†ุง ุฃู† L
176
00:14:43,080 --> 00:14:49,710
of X ู‡ูˆ N ู„ู€ L of X ู„ูƒู„ ุงู„ู„ูŠ ู‡ูŠ ุนู†ุฏูŠ ุงู„ุขู†ุŒ by VI ุงู„ู„ูŠ
177
00:14:49,710 --> 00:14:53,530
ู‡ูˆ ุฒูŠ .. ู…ุดุงุจู‡ ู„ู„ูŠ ุญูƒูŠู†ุงู‡ุง ู‚ุจู„ ุจุดูˆูŠุฉ ุจุงู„ุถุจุทุŒ ููŠ ุญุฏ
178
00:14:53,530 --> 00:14:58,890
ุงู„ exponential ุจุณ ุฎู„ูŠู†ูŠ ู…ุด ูˆุดูƒู„ุฉ ู†ุนุงูˆุฏู‡ุงุŒ ุงู„ุขู† ุดูˆู L
179
00:14:58,890 --> 00:15:03,680
of XM minus M ุฃูŠุด ุจุชุณุงูˆูŠุŸ L of ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ ู„ุฃู† ู‡ุฐุง
180
00:15:03,680 --> 00:15:05,860
X ู‡ูˆ ุตูุฑ ุงู„ู„ูŠ ู‡ูŠ L of ูˆุงุญุฏุŒ L of ูˆุงุญุฏ ู…ุด ู‚ูˆู„ู†ุง
181
00:15:05,860 --> 00:15:11,040
ุนู†ู‡ุง ุตูุฑ ู‡ูˆ ูŠุณุงูˆูŠ L of XM ููŠ XM minus ูˆุงุญุฏุŒ ุงู„
182
00:15:11,040 --> 00:15:16,300
logarithmic ุจุทู„ุน ุฅู† ุชุฌู…ุน L of XM ุฒุงุฆุฏ L of X minus M
183
00:15:16,300 --> 00:15:21,920
ู„ุฃู† ู‡ุฐู‡ ุฃุซุจุชู†ุงู‡ุง ุนุจุงุฑุฉ ุนู† M L of X ุฒุงุฆุฏ L of X
184
00:15:21,920 --> 00:15:27,500
minus MุŒ ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† M ููŠ L of X ุฒุงุฆุฏ L of X
185
00:15:27,500 --> 00:15:32,040
minus M ุจุณุงูˆูŠ ุตูุฑุŒ ุงู†ู‚ู„ ู„ูŠ ู‡ุฐุง ุนู„ู‰ ุงู„ุฌู‡ุฉ ุงู„ุซุงู†ูŠุฉ ุจูŠุทู„ุน
186
00:15:32,040 --> 00:15:35,760
L of X minus M ุงู„ู„ูŠ ู‚ุนุฏุช ู„ุญุงู„ู‡ุง ุจุณุงูˆูŠ ู†ุงู‚ุต M ููŠ L
187
00:15:35,760 --> 00:15:41,720
of XุŒ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ู„ูƒู„ M ุณูˆุงุก ู…ูˆุฌุจุฉ ุฃูˆ ุณุงู„ุจุฉ
188
00:15:41,720 --> 00:15:48,940
ุจูŠุทู„ุน ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ L of X ู†ุงู‚ุต M ุจุณุงูˆูŠ M ููŠ L of X
189
00:15:48,940 --> 00:15:53,860
ุณูˆุงุก ูƒุงู†ุช ู…ูˆุฌุจุฉ ุฃูˆ ุณุงู„ุจุฉุŒ ู†ูŠุฌูŠ ุงู„ุขู† ู…ู†ู‡ุง ุจุฏู†ุง ู†ุฃุฎุฐ
190
00:15:53,860 --> 00:15:57,360
ู„ู…ูŠู†ุŸ ู„ู€ ุงู„ู„ูŠ ู‡ูŠ ุงู„ RุŒ ู„ุฃู† therefore for any M
191
00:15:57,360 --> 00:16:02,800
element in Z ูˆ N element in NุŒ ุนู†ุฏูŠ ุงุญุณุจ ู„ูŠ ุงู„ุขู† L of
192
00:16:02,800 --> 00:16:07,020
X ุฃุณ M ุนู„ู‰ NุŒ ุจุณ ุถุฑุจ ู„ูŠู‡ุง ููŠ N ุจุนุฏ ุฅุฐู†ูƒุŒ Y ุณุงูˆูŠ ุงู„ู„ูŠ
193
00:16:07,020 --> 00:16:12,460
ู‡ูŠ L of X ุฃุณ M ุนู„ู‰ N ู„ูƒู„ ู…ุง ู„ู‡ ุฃุณ N ู„ุฅู†ู‡ ุตุญูŠุญุฉ ู‡ุฐู‡
194
00:16:12,460 --> 00:16:18,080
ู„ู„ N ุงู„ู„ูŠ ู‡ูŠ ููŠ N ูˆุงุชูู‚ู†ุง ุนู„ูŠู‡ุง ุงู„ุขู†ุŒ ู‡ุฐู‡ ุจุชุณุงูˆูŠ
195
00:16:18,080 --> 00:16:21,520
ู‡ุฐู‡ ูˆุงุถุญุฉ ู„ุฃู† ู‡ุฐู‡ ู‡ูŠ ุงู„ X ุชุจุนุชู†ุง ูˆู‡ุฐู‡ ุงู„ N ุจุชุทู„ุน
196
00:16:21,520 --> 00:16:27,410
ุจุฑุงุŒ ุงู„ุขู† ู‡ุฐู‡ ุงู„ุขู† ู…ุน ุงู„ุขู† ุจูŠุตูŠุฑ L of X plus M L of
197
00:16:27,410 --> 00:16:30,870
X plus M ู‚ุจู„ ุจุดูˆูŠุฉ ุจู‚ู‰ ู‚ูˆู„ู†ุง ุนู†ู‡ุง ุจูŠุณุงูˆูŠ M L of X
198
00:16:30,870 --> 00:16:34,270
ุณูˆุงุก ูƒุงู†ุช M positive ุฃูˆ ุงู„ู„ูŠ ู‡ูˆ negative ุตุงุฑ ู‡ุฐู‡
199
00:16:34,270 --> 00:16:40,930
ุจุชุณุงูˆูŠ ู‡ุฐู‡ุŒ ุฅุฐุง ุงู†ู‚ู„ ู„ูŠ ุงู„ุขู†ุŒ ุงู„ุขู† ู‡ุฐู‡ ุงู† ุจูŠุตูŠุฑ ุนู†ุฏูŠ L
200
00:16:40,930 --> 00:16:44,910
of X of M ุนู„ู‰ N ุจูŠุณุงูˆูŠ M ุนู„ู‰ N ููŠ L of XุŒ ุฅุฐุง ุตุงุฑ
201
00:16:44,910 --> 00:16:49,490
ุนู†ุฏูŠ ู„ุฃูŠ rational numberุŒ ุตุงุฑ ุนู†ุฏูŠ L of X R ุจูŠุณุงูˆูŠ R
202
00:16:49,490 --> 00:16:55,670
L of X ู„ูƒู„ R ุงู„ู„ูŠ ุจุชู†ุชู…ูŠ ู„ NQุŒ ู†ูŠุฌูŠ ุงู„ุขู† ู„ู€ ุงู„ู„ูŠ ู‡ูŠ
203
00:16:55,670 --> 00:16:57,230
ุงู„ุฌุฒุก ุงู„ุฃุฎูŠุฑ ู…ู† ุงู„ู†ุธุฑูŠุฉ
204
00:17:08,180 --> 00:17:11,120
ุงู„ูƒู„ุงู… ู…ุดุงุจู‡ ู„ู„ูŠ ุญูƒูŠู†ุงู‡ุง ู‚ุจู„ ุจุดูˆูŠุฉ ููŠ ุงู„ุฅุซุจุงุช ุงู„ู„ูŠ
205
00:17:11,120 --> 00:17:15,260
ู‡ูˆ ุงู„ limit ุชุจุน ุงู„ exponential ุนู†ุฏ 2 ุฃุตุบุฑ ู…ู† E
206
00:17:15,260 --> 00:17:19,380
ูˆู‚ู„ู†ุง ู„ูŠุด ุงู„ุขู†ุŒ ุงู„ E n ู‡ู†ุง ุจูŠุตูŠุฑ 2 ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ
207
00:17:19,380 --> 00:17:19,920
ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ
208
00:17:19,920 --> 00:17:21,140
ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ
209
00:17:21,140 --> 00:17:22,840
ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ
210
00:17:22,840 --> 00:17:23,240
ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ
211
00:17:23,240 --> 00:17:26,700
ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ
212
00:17:26,700 --> 00:17:30,620
ู…ู† E ุฃุตุบุฑ
213
00:17:33,960 --> 00:17:39,580
ู„ูƒู† ุงู„ู„ูŠ ู‡ูˆ L of E N ุจุณุงูˆูŠ N ูˆุงู„ู„ูŠ ู‡ูŠ L of E
214
00:17:39,580 --> 00:17:44,020
minus N ุจุณุงูˆูŠ ู†ุงู‚ุต NุŒ ุฎู„ูŠู†ูŠ ููŠ ุงู„ุฐุงูƒุฑุฉ ู‡ุฐูˆู„ุŒ ุฅุฐุง for
215
00:17:44,020 --> 00:17:47,480
every N element in R there exists X element in R
216
00:17:47,480 --> 00:17:52,670
ุจุญูŠุซ ุฃู† X ุฃูƒุจุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† NุŒ ู„ูƒู„ N element in N ููŠ X
217
00:17:52,670 --> 00:17:56,350
element in RุŒ ุฃูƒูŠุฏ X ุฃูƒุจุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† E N ู„ุฃู†ู‡ ุฃุฎุฐุช
218
00:17:56,350 --> 00:18:00,590
N ุจูŠู† ุฅูŠุฏูŠุง ุญุณุจุช ุงู„ E N ุทู„ุน ุนู†ุฏูŠ ุฑู‚ู… ุฃุฎุฐุช ุงู„ X ุฃูƒุจุฑ
219
00:18:00,590 --> 00:18:03,310
ู…ู†ู‡ุงุŒ ูƒูŠุฏ ุจุงู„ู„ู‡ุŒ ุทูŠุจุŒ ู„ุฃู†ู‡ unbounded real numbers
220
00:18:03,310 --> 00:18:06,710
then L ููŠ ู‡ุฐู‡ ุฃูƒุจุฑ ุฃูˆ ู…ู† L ููŠ ู‡ุฐู‡ุŒ ู„ุฃู†ู‡ ุงู„ L
221
00:18:06,710 --> 00:18:10,810
strictly increasingุŒ ุฅุฐุง ุตุงุฑ L ููŠ X ุฃูƒุจุฑ ู…ู† ู…ูŠู†ุŸ ู…ู†
222
00:18:10,810 --> 00:18:16,130
ุงู„ N ุฃู„ู E NุŒ ูŠุนู†ูŠ ุฃูƒุจุฑ ู…ู† ุงู„ุขู†ุŒ ู„ุฃู† limit ู‡ุฐู‡ as
223
00:18:16,130 --> 00:18:21,210
x goes to infinity ุงู„ู„ูŠ ู‡ูˆ ุจูŠูƒูˆู† ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู„ูŠ
224
00:18:21,210 --> 00:18:23,950
ู‡ูŠ limit ู‡ุฐู‡ as n goes to infinity ูˆูŠุณุงูˆูŠ infinity
225
00:18:23,950 --> 00:18:27,550
ู„ุฃู† ู„ูƒู„ ู„ู…ุง ุงู„ุขู† ุชุฑูˆุญ ู„ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุฃูƒูŠุฏ ุงู„ X ุจุชุฑูˆุญ
226
00:18:27,550 --> 00:18:31,270
ู„ู…ูŠู†ุŸ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉุŒ ูุตุงุฑ ุนู†ุฏูŠ ู‡ุฐู‡ ุจุชุฑูˆุญ ุฅู„ู‰ ู…ุง
227
00:18:31,270 --> 00:18:34,970
ู„ุง ู†ู‡ุงูŠุฉุŒ ุงู„ุขู† ุตุงุฑ ุนู†ุฏูŠ limit L of X ู„ู…ุง X ุชุฑูˆุญ ู„ู…ุง
228
00:18:34,970 --> 00:18:41,040
ู„ุง ู†ู‡ุงูŠุฉ ุจูŠุณุงูˆูŠ ู…ุง ู„ุง ู†ู‡ุงูŠุฉุŒ similarly ุงู„ุขู† ู„ูƒู„ ู†ุงู‚ุต any
229
00:18:41,040 --> 00:18:43,100
element in z positive ุจู„ุงู‚ูŠ x element in r
230
00:18:43,100 --> 00:18:45,740
positive ุจุญูŠุซ ุฃู† x ุฃูƒุจุฑ ู…ู† ุตูุฑ ูˆุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ
231
00:18:45,740 --> 00:18:46,340
ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆุฃุตุบุฑ ู…ู† ุตูุฑ ูˆุฃุตุบุฑ ู…ู† ุตูุฑ ูˆุฃุตุบุฑ ู…ู†
232
00:18:46,340 --> 00:18:47,840
ุตูุฑ ูˆุฃุตุบุฑ ู…ู† ุตูุฑ ูˆุฃุตุบุฑ ู…ู† ุตูุฑ ูˆุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ
233
00:18:47,840 --> 00:18:51,500
ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆุฃุตุบุฑ ู…ู† ุตูุฑ ูˆุฃุตุบุฑ ู…ู† ุตูุฑ ูˆุฃุตุบุฑ ู…ู†
234
00:18:51,500 --> 00:18:57,960
ุตูุฑ ูˆุฃุตุบุฑ ู…ู† ุตูุฑ ูˆุฃุตุบุฑ ู…ู† ุตูุฑ ูˆุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ
235
00:18:57,960 --> 00:19:02,520
ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆุฃุตุบุฑ ู…ู† ุตูุฑ ูˆุฃุตุบุฑ ู…ู† ุตูุฑ ูˆุฃุตุบุฑ ู…ู†
236
00:19:02,520 --> 00:19:09,620
ุตูุฑ ูˆุฃุตุบุฑ ู…ู† ุตูุฑ ูˆุฃุตุบุฑ ู…ู† ุตูุฑ ูˆุฃุทูŠุจุŒ then L of X
237
00:19:09,620 --> 00:19:13,660
ู‡ูŠูƒูˆู† ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ E to the minus NุŒ ูŠุนู†ูŠ L of X
238
00:19:13,660 --> 00:19:17,800
ุงู„ู„ูŠ ู‡ูŠ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู†ุงู‚ุต NุŒ ุฅุฐุง as N goes to
239
00:19:17,800 --> 00:19:22,700
infinityุŒ as N goes to infinity ุงู„ู„ูŠ ู‡ูˆ ุงู„ E to the
240
00:19:22,700 --> 00:19:26,540
minus N ุจูŠุฑูˆุญ ู„ู„ 0 ู…ู† ุงู„ูŠู…ูŠู†ุŒ ุฅุฐุง ุงู„ X ุจุชุฑูˆุญ ู„ู„ 0 ู…ู†
241
00:19:26,540 --> 00:19:30,820
ุงู„ูŠู…ูŠู†ุŒ ุฅุฐุง ุนู†ุฏูŠ ุงู„ X ุจุชุฑูˆุญ ู„ู„ 0 ู…ู† ุงู„ูŠู…ูŠู†ุŒ ุงู„ู„ูŠ ู‡ูˆ
242
00:19:30,820 --> 00:19:34,580
ุฃุตุบุฑ ู„ู…ุง ุงู„ู€ limit L of X ุฃุตุบุฑ ู…ู† limit E to the
243
00:19:34,580 --> 00:19:37,900
minus N ู„ู…ุง ู‡ุฐุง ูŠุฑูˆุญ ู„ู€ 0 ู…ู† ุงู„ูŠู…ูŠู†ุŒ ุฃูˆ ุจู…ุนู†ู‰ ุขุฎุฑ
244
00:19:37,900 --> 00:19:41,680
ู„ู…ุง ุงู„ู€ N ุชุฑูˆุญ ู„ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูˆู‡ุฐุง ุจูŠุฑูˆุญ ู„ู…ูŠู†ุŸ ู„ู€
245
00:19:41,680 --> 00:19:44,760
InfinityุŒ ุฅุฐุง limit L of X ู„ู…ุง X ุชุฑูˆุญ ู„ู…ุง ู„ุง ู†ู‡ุงูŠุฉ
246
00:19:44,760 --> 00:19:50,920
ุจุณุงูˆูŠ ุณุงู„ุจ Infinity ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจุŒ hence limit L of
247
00:19:50,920 --> 00:19:54,460
X ู„ู…ุง X ุชุฑูˆุญ ู„ู€ 0 ู…ู† ุงู„ูŠู…ูŠู† ุจุณุงูˆูŠ ุณุงู„ุจ Infinity
248
00:19:54,460 --> 00:19:58,500
ุทูŠุจ
249
00:20:12,260 --> 00:20:16,320
ุงู„ุขู† ุณุงุฑู‘ุนู†ุงุŒ ุงู„ุขู† ู†ู‚ุฏุฑ ุฃู† ุงู„ู„ูŠ ู‡ูˆ ู†ุญูƒูŠ ุนู† ุงู„ bar
250
00:20:16,320 --> 00:20:20,080
functionsุŒ ุจุฏู†ุง ู†ุนุฑู ุงู„ bar functions ุงู„ู„ูŠ ู‡ูŠ ุจู†ุงุก
251
00:20:20,080 --> 00:20:25,060
ุนู„ู‰ ุงู„ู„ูŠ ุญูƒูŠู†ุงู‡ ูˆุงู„ู„ูŠ ู‡ูŠ ู…ูˆุถูˆุน ุงู„ bar functions
252
00:20:25,060 --> 00:20:28,880
ูƒู„ ู…ุง ููŠู‡ ุชู‚ุฑูŠุจุงู‹ ูŠุนู†ูŠ ุจู†ุนุชุจุฑู‡ exercises ุงุญู†ุง ู„ูƒู†
253
00:20:28,880 --> 00:20:32,520
ุฎู„ูŠู†ุง ู†ุนุฑู ุงู„ุชุนุฑูŠูุงุช ูˆุงู„ู†ุธุฑูŠุงุช ุจุชูƒูˆู† ุงู„ู„ูŠ ู‡ูŠ
254
00:20:32,520 --> 00:20:35,900
ู…ุนุงูƒู… exercises ุจุณูŠุทุฉ ุจู†ุงุก ุนู„ู‰ ุงู„ุชุนุฑูŠู ุงู„ู„ูŠ
255
00:20:35,900 --> 00:20:40,720
ุจู†ุนุฑูู‡ุงุŒ ุงู„ู„ูŠ ู‡ู†ุงุฎุฐู‡ ฮฑ ูŠู„ูŠู…ู†ุชุงู† R ูˆ X ุฃูƒุจุฑ ู…ู† 0ุŒ The
256
00:20:40,720 --> 00:20:43,320
number X to the Alpha is defined to be .. ุงู„ุขู† ุจุฏูŠ
257
00:20:43,320 --> 00:20:46,940
ุฃุนุฑู ุญุงุฌุฉ ุงุณู…ู‡ุง X to the AlphaุŒ X to the Alpha ุจุฏูŠ
258
00:20:46,940 --> 00:20:49,900
ุฃุนุฑูู‡ุง .. ุฅูŠุด ุจุฏูŠ ุฃุนุฑูู‡ุงุŸ ุจุฅูŠุด ุฃู†ุง ู…ุนุฑู ุนู†ุฏูŠ ู…ู†
259
00:20:49,900 --> 00:20:54,440
ุงู„ุฃุตู„ ุงู„ exponential ู…ุนุฑูุฉ .. ุฎู„ุตู†ุง ู…ู†ู‡ุง ูˆุงู„ ln
260
00:20:54,440 --> 00:20:59,000
ู…ุนุฑูุฉ .. ุฅุฐุง E to the Alpha ููŠ ln ุงู„ XุŒ ู‡ุฐู‡ ุงู„ู…ู‚ุฏุงุฑ
261
00:20:59,000 --> 00:21:03,820
ู„ู‡ุฐุง ู…ุนุฑู ูˆู‡ุฐุง ู…ุนุฑู ุจุฏูŠ ุฃุณู…ูŠู‡ X to the Min to the
262
00:21:03,820 --> 00:21:07,400
Alpha ุงู„ู„ูŠ ู‡ูˆ ููŠ ุงู„ูˆุงู‚ุน ุนุจุงุฑุฉ ุนู† Min E to the
263
00:21:07,400 --> 00:21:12,040
Alpha L of XุŒ L of X ู…ุนุฑูุฉ ูˆุงู„ู€ E ู…ุนุฑูุฉ ุฅุฐุง ูƒู„ ู‡ุฐู‡
264
00:21:12,040 --> 00:21:16,000
ู…ุนุฑูุฉ ุจุชุณู…ูŠู‡ุง X to the main to the alphaุŒ ุงู„ุขู† ุตุงุฑุช
265
00:21:16,000 --> 00:21:19,540
ุนู†ุฏูŠ ูŠุนู†ูŠ ู‚ูŠู…ุฉ ุงู„ู€ X under this function ุงู„ู„ูŠ
266
00:21:19,540 --> 00:21:23,120
ุนุฑูุชู‡ุง ู„ุฌุฏูŠุฏุฉ ูŠุนู†ูŠ ุฅุฐุง ุจุชุณู…ูŠู‡ุง ุฏูŠ ุงู„ function ุงู„ู€
267
00:21:23,120 --> 00:21:28,240
R of X ุฅูŠุด ุนุฑูุชู‡ุง ุฃู†ุง ุจุชุณุงูˆูŠ X to the alphaุŸ ูŠุนู†ูŠ
268
00:21:28,240 --> 00:21:31,680
ูƒู„ ุงู„ X ุจุชุตูŠุฑ ูŠุดู…ู„ X to the Alpha ูˆ X ุฃูƒุจุฑ ู…ู† 0
269
00:21:31,680 --> 00:21:36,780
ู‡ุฐู‡ ุงู„ X to the Alpha ู‡ูŠ ุงู„ู„ูŠ ุจุฏูŠ ุฃุณู…ูŠู‡ุง ุงู„ power
270
00:21:36,780 --> 00:21:42,000
functionุŒ ุจุฏูŠ ุฃุณู…ูŠู‡ุง power function with exponent
271
00:21:42,000 --> 00:21:47,540
mean Alpha ูˆุงู„ X ู‡ูŠ ุฃุดู…ุงู„ู‡ุง ุงู„ู…ุชุบูŠุฑุฉ ุงู„ู„ูŠ ุฃูƒุจุฑ ู…ู†
272
00:21:47,540 --> 00:21:54,340
0ุŒ ุดูˆู ุงู„ุขู† ู†ุดูˆู ุจุนุถ ุงู„ุฎูˆุงุต ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ
273
00:21:54,340 --> 00:21:56,460
ุงู„ุฏุงู„ุฉุŒ ุทูŠุจ
274
00:22:04,730 --> 00:22:08,690
ุงู„ุขู† if x ุฃูƒุจุฑ ู…ู† 0 and alpha ุจุณุงูˆูŠ m ุนู„ู‰ n where
275
00:22:08,690 --> 00:22:12,770
m element in z ูˆ n element in n then we define x
276
00:22:12,770 --> 00:22:17,790
to the alpha ุจุณุงูˆูŠ x to the m ุฃุณ ูˆุงุญุฏ ุนู„ู‰ n in
277
00:22:17,790 --> 00:22:23,110
section mean ุฎู…ุณุฉ ูˆุณุชุฉ ู‡ุชุนุฑูู†ุงู‡ุง ุฒู…ุงู† ุฅู†ู‡ ููŠ ุญุงู„ุฉ
278
00:22:23,110 --> 00:22:26,570
ุจุณ ุงู„ู„ูŠ ู‡ูŠ ุงู„ rational number ุนุฑูู†ุง x to the m ุนู„ู‰
279
00:22:26,570 --> 00:22:30,630
n ุจุณุงูˆูŠ x to the m ู„ูƒู„ ุฃุณ ูˆุงุญุฏ ุนู„ู‰ nุŒ ู…ุงุดูŠ ุงู„ุญุงู„
280
00:22:30,630 --> 00:22:34,510
..ุงู„ุขู† ุจุฏู†ุง ู†ุดูˆู ู‡ุฐุง ุงู„ุชุนุฑูŠู ู…ุทุงุจู‚ ู„ุชุนุฑูŠูู†ุง ุงู„ูŠูˆู…
281
00:22:34,510 --> 00:22:41,670
ูˆู„ุฃ hence we have ู„ู† ุงู„ X to the Alpha ู„ู† ุงู„ X
282
00:22:41,670 --> 00:22:45,370
to the Alpha ู„ู† ุงู„ X to the Alpha ุจูŠุณุงูˆูŠ Alpha ู„ู†
283
00:22:45,370 --> 00:22:51,540
ุงู„ X ุนุฑูู†ุงู‡ุง ู‡ุฐู‡ ุทูŠุจ where X to the Alpha ุจูŠุณุงูˆูŠ E
284
00:22:51,540 --> 00:22:56,260
to the Ln X to the Min to the Alpha ุงู„ู„ูŠ ู‡ูˆ ุจูŠุณุงูˆูŠ
285
00:22:56,260 --> 00:23:01,020
E to the Alpha ููŠ Min ููŠ Ln ุงู„ X ูƒู„ุงู… ูƒู„ู‡ ุณู‡ู„ ุงู„
286
00:23:01,020 --> 00:23:05,740
X to the Alpha ู‡ูˆ ุงู„ู„ูŠ ุนุฑูู†ุงู‡ุง ุงู„ู„ูŠ ุนุจุงุฑุฉ ุนู† E
287
00:23:05,740 --> 00:23:10,570
ุจุชุตูŠุฑ to the Ln X to the Alpha ู„ุฃู†ู‡ ุงุณุชุจุฏู„ุช ุงู„ู€ x
288
00:23:10,570 --> 00:23:15,090
to the alpha ุจู‚ูŠู…ุชู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูŠ
289
00:23:15,090 --> 00:23:18,630
Alpha Ln x ุงู„ู„ูŠ ู‡ูŠ ุจูŠุณุงูˆูŠ E to the Ln x to the
290
00:23:18,630 --> 00:23:24,510
Min to the Alpha ุฅุฐุง ุณูˆุงุก ุงุญู†ุง ุจุงู„ุชุนุฑูŠู ุงู„ู„ูŠ ู‡ูˆ
291
00:23:24,510 --> 00:23:28,190
ุงุญู†ุง ู‡ุฐุง ุจุงู„ Exponent ุฃูˆ ุจุงู„ ุงู„ Function ุงู„ู„ูŠ
292
00:23:28,190 --> 00:23:33,110
ุนุฑูู†ุงู‡ุง ุจุงู„ุดูƒู„ ู‡ุฐุง ู‡ูŠุทู„ุน ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู‚ูŠู…ุชูŠู† ู†ูุณ
293
00:23:33,110 --> 00:23:34,790
ุงู„ู‚ูŠู…ุฉ ุทูŠุจ
294
00:23:37,160 --> 00:23:42,300
ู†ุฌูŠ ุงู„ุขู† ู„ุจุนุถ ุงู„ุฎูˆุงุต ุงู„ู„ูŠ ู‡ูŠ ุชุจุนุช ุงู„ Exponential
295
00:23:42,300 --> 00:23:47,180
ุงู„ Power Function ูˆ ุงู„ุฎูˆุงุต ู‡ู†ุชุฑูƒู‡ ู„ูƒู… ุฅูŠุงู‡ ู„ุฃู†ู‡ุง
296
00:23:47,180 --> 00:23:54,600
ู…ุจุงุดุฑุฉ ุนู„ู‰ ุงู„ุชุนุฑูŠู ุชุจุนู†ุง ู…ุจุงุดุฑุฉ
297
00:23:54,600 --> 00:24:01,100
ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุชุนุฑูŠู ุงู„ู„ูŠ ุนู†ุฏู†ุง ูˆ ู‡ูŠูƒูˆู† ููŠ ุนู†ุฏูŠ
298
00:24:01,100 --> 00:24:05,760
ุงู„ุขู† ุงู„ู†ุธุฑูŠุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ู‡ูŠ 8 3 11 ู„ูˆ ูƒุงู†ุช Alpha
299
00:24:05,760 --> 00:24:11,340
element in R ูˆ X ูˆ Y ุงู„ู„ูŠ ู‡ูˆ ุชู†ุชู…ูŠ ู„ู„ูุชุฑุฉ Zero ูˆ
300
00:24:11,340 --> 00:24:16,500
ุซู…ุงู†ูŠุฉ Zero ูˆ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุขุณู then ู…ุนู„ุด ุนุดุงู† ุฏู‡ ุทู„ุนุช
301
00:24:16,500 --> 00:24:20,450
ุงู„ูƒู‡ุฑุจุง ู‚ุนุฏ ู†ู‚ู„ู ุงู„ูƒู‡ุฑุจุง ุฃู†ุง If ฮฑ element in R ูˆ X
302
00:24:20,450 --> 00:24:26,350
Y belongs to 0 ฮฑ then 1 to the ฮฑ ุจูŠุณุงูˆูŠ 1 ูˆ X to the
303
00:24:26,350 --> 00:24:30,270
ฮฑ ุฃูƒุจุฑ ู…ู† 0 ูˆ X Y to the ฮฑ ุจูŠุณุงูˆูŠ X to the ฮฑ ูˆ Y to
304
00:24:30,270 --> 00:24:35,590
the ฮฑ ูˆ X ุนู„ู‰ Y to the ฮฑ ุจูŠุณุงูˆูŠ X to the ฮฑ ุนู„ู‰ Y to
305
00:24:35,590 --> 00:24:39,370
the ฮฑ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ุธุฑูŠุฉ ุทุจุนุง ุงู„ู„ูŠ ู‡ูŠ ู…ุจุงุดุฑุฉ ุนู„ู‰
306
00:24:39,370 --> 00:24:45,100
ุชุนุฑูŠูู†ุง ุงู„ู„ูŠ ู‡ูˆ X to the ฮฑ ุจูŠุณุงูˆูŠ E of ฮฑ Ln X ูŠุนู†ูŠ
307
00:24:45,100 --> 00:24:49,800
ุจุฏูƒ ุชูŠุฌูŠ ุชุณุชุฎุฏู… ุชุนุฑูŠููƒ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุนุฑูู†ุงู‡ ูˆุนู„ูŠู‡
308
00:24:49,800 --> 00:24:53,480
ุงู„ู„ูŠ ู‡ูˆ ุจุชุจุฏุฃ ุชุดุชุบู„ ูˆ ุชุจู†ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠ
309
00:24:53,480 --> 00:24:57,680
ุงู„ู‚ูˆุงู†ูŠู† ุงู„ู„ูŠ ุจู†ุญูƒูŠ ุนู†ู‡ุง ุงู„ู„ูŠ ู‡ูˆ ุชุนุฑูŠูู†ุง ุงู„ู„ูŠ ู‡ูˆ X
310
00:24:58,570 --> 00:25:05,210
to the alpha ุจุชุณุงูˆูŠ E of alpha Len ุงู„ู„ูŠ ู‡ูŠ L of X
311
00:25:05,210 --> 00:25:10,650
ุฃูˆ ุญุณุจ ุงู„ Notation ุชุจุนุชู†ุง E to the alpha Len ุงู„ X
312
00:25:10,650 --> 00:25:15,710
ู‡ุฐุง ุงู„ุขู† ุงู„ุชุนุฑูŠู ุงู„ู„ูŠ ุนู„ูŠู‡ ุจุฏูƒ ุงู„ู„ูŠ ู‡ูˆ ุชุจุฏุฃ ุงู„ู„ูŠ
313
00:25:15,710 --> 00:25:23,290
ู‡ูˆ ุชุดุชุบู„ ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ุธุฑูŠุฉ ูˆ ุชุจุฑู‡ู†ู‡ุง ุงู„ู„ูŠ ุนู†ุฏู†ุง
314
00:25:23,290 --> 00:25:27,630
ุงู„ู†ุธุฑูŠุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ุฐูƒุฑู†ุงู‡ุง ู‚ุจู„ ุจุดูˆูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐู‡
315
00:25:27,630 --> 00:25:32,090
ุงู„ู†ุธุฑูŠุฉ ุนู„ู‰ ุงู„ุชุนุฑูŠู ู…ุจุงุดุฑุฉ ูˆ ู†ุธุฑูŠุฉ ุชุงู†ูŠุฉ ุฃูŠุถุง ุจุฑุถู‡
316
00:25:32,090 --> 00:25:35,670
ู…ู† ุงู„ุฎูˆุงุต ุฅุฐุง ูƒุงู†ุช Alpha ูˆ Beta element ุฑ ูˆ X ููŠ
317
00:25:35,670 --> 00:25:40,640
ุงู„ูุชุฑุฉ Zero ูˆู„ุง ู†ู‡ุงูŠุฉ ุฅุฐุง X to the Alpha ุฒุงุฆุฏ ุจูŠุชุง
318
00:25:40,640 --> 00:25:44,040
ุจุฑุถู‡ ู†ูุณ ุงู„ุงุดูŠุงุก ุทุจุนุง ู‡ุชู„ุงู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู†ุช ู„ู…ุง ุชูŠุฌูŠ
319
00:25:44,040 --> 00:25:48,320
ุชูุฑุฏ ู‡ุฐู‡ ู‡ุชุตูŠุฑ ุชุณุชุฎุฏู… ุฎูˆุงุต ุงู„ู…ุนุฑูุฉ ุงู„ู„ูŠ ู‡ูŠ
320
00:25:48,320 --> 00:25:52,360
ุจูˆุงุณุทุชู‡ุง ู…ุนุฑูุฉ ู‡ุชุณุชุฎุฏู… ุฎูˆุงุต ุงู„ X Exponential ูˆ ุงู„
321
00:25:52,360 --> 00:25:55,420
ู„ูŠ ู‚ุจู„ู‡ ุจุดูˆูŠุฉ ู‡ุชู„ุงู‚ูŠ ุญุงู„ูƒ ุจุชุตู„ X to the Alpha
322
00:25:55,420 --> 00:25:58,310
ุฒุงุฆุฏ ุจูŠุชุง ุจูŠุณุงูˆูŠ X to the Alpha ููŠ X to the ุจูŠุชุง ูˆ ู†ูุณ
323
00:25:58,310 --> 00:26:05,170
ุงู„ุดูŠุก Xยฒฮฑยฒฮฒ ุจูŠุณุงูˆูŠ X ฮฑ beta ูˆ ูŠุณุงูˆูŠ Xยฒฮฒยฒฮฑ ูˆ ู‡ุชูŠุฌูŠ
324
00:26:05,170 --> 00:26:08,830
.. ุงู„ู„ูŠ ู‡ูŠ ูƒู„ู‡ุง ู‚ูˆุงู†ูŠู† ุงุญู†ุง ุจู†ุนุฑูู‡ุง Xยฒ-ฮฑ ุจูŠุณุงูˆูŠ 1
325
00:26:08,830 --> 00:26:12,270
ุนู„ู‰ Xยฒฮฑ ูˆ ู†ูุณ ุงู„ุดูŠุก ุฅุฐุง ูƒุงู†ุช alpha ุฃุตุบุฑ ู…ู† beta
326
00:26:12,270 --> 00:26:17,770
ู‡ูŠูƒูˆู† Xยฒฮฑ ุฃุตุบุฑ ู…ู† Xยฒฮฒ ู„ู…ุง ุงู† X ุชูƒูˆู† ุฃูƒุจุฑ ู…ู† 1 ูˆ
327
00:26:17,770 --> 00:26:22,130
ู‡ุฐู‡ ูƒู„ู‡ุง ุจุชูƒูˆู† X Resources ู…ุนุงูƒู… ุงู„ู„ูŠ ู‡ูŠ ู…ุจุงุดุฑุฉ
328
00:26:22,130 --> 00:26:31,830
ุนู„ู‰ ู‡ุฐู‡ ุงู„ุชุนุฑูŠู ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุนู„ู‰ ุงู„ุณุฑูŠุน let
329
00:26:31,830 --> 00:26:35,010
alpha element in R then the function X ุจุงู„ุชุฑูˆุญ ู„ู„ู€
330
00:26:35,010 --> 00:26:37,670
X alpha ู…ู† 0 ูˆ 1 to R is continuous and
331
00:26:37,670 --> 00:26:41,210
differentiable and ุงู„ู„ูŠ ู‡ูˆ ุงู„ Derivative ู„ู„ X to
332
00:26:41,210 --> 00:26:43,630
the alpha ุจูŠุณุงูˆูŠ alpha to the X to the alpha minus 1
333
00:26:43,630 --> 00:26:47,650
for X element in 0 ูˆ 1 ุทุจูŠุนูŠ ุฃุตู„ุง ู‡ูŠ Composition
334
00:26:47,650 --> 00:26:54,490
of two ู‡ูŠ ุนู†ุฏูŠ Function ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ Continuous ู‡ุฐุง
335
00:26:54,490 --> 00:26:57,650
ูƒู„ู‡ุง ุนู„ู‰ ุจุนุถ ุงู„ู€ E ูƒู…ุงู† Continuous ุฏู‡ ุงู„ู„ูŠ ู‡ุชุทู„ุน
336
00:26:57,650 --> 00:26:59,850
ู‡ุฐุง Continuous ูˆ ู‡ุฐุง Continuous ูˆ ู†ูุณ ุงู„ุดูŠุก ุงู„
337
00:26:59,850 --> 00:27:02,870
Differentiability ุฅุฐุง ุฃูƒูŠุฏ ุงู„ู„ูŠ ู‡ูŠ ุงู„ Function
338
00:27:02,870 --> 00:27:05,890
ุงู„ู„ูŠ ุนู†ุฏู†ุง X to the X to the Alpha ุญุณุจ ุชุนุฑูŠูู†ุง is
339
00:27:05,890 --> 00:27:09,410
Continuous and Differentiable ูˆ ู„ูˆ ุจุฏูƒ ุชุณู…ูŠ ุงู„ู„ูŠ
340
00:27:09,410 --> 00:27:13,710
ู‡ูˆ ู‡ุฐู‡ ุงู„ Derivative ูˆ ุจุฏูƒ ุชุจุฏุฃ ุชูุงุถู„ ุฏูŠ ุงุชูุงุถู„ DX
341
00:27:13,710 --> 00:27:17,050
Alpha ูŠุนู†ูŠ ุจุฏูƒ ุชุชูุงุถู„ ู‡ุฐู‡ ูƒูŠู ุชุชูุงุถู„ ู‡ุฐู‡ ุงู„
342
00:27:17,050 --> 00:27:20,860
Exponential ุงู„ู„ูŠ ู‡ูŠ E to the Alpha Ln ุงู„ X ููŠ
343
00:27:20,860 --> 00:27:25,580
ุงู„ุชูุงุถู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุฌูˆุง ุงู„ู„ูŠ ู‡ูˆ Alpha ููŠ ูˆุงุญุฏ ุนู„ู‰
344
00:27:25,580 --> 00:27:30,120
X ู…ุงุดูŠ ุงู„ุญุงู„ ุงู„ู„ูŠ ู‡ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ุจุตูŠุฑ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ
345
00:27:30,120 --> 00:27:35,260
ุนุจุงุฑุฉ ุนู† E to the Alpha Ln ุงู„ X ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู†
346
00:27:35,260 --> 00:27:38,480
ุงู„ X to the Alpha ู†ูุณู‡ุง ููŠ ุงู„ุชูุงุถู„ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ
347
00:27:38,480 --> 00:27:43,080
Alpha ุนู„ู‰ X ุจูŠุณุงูˆูŠ Alpha ุฃุณ X ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐู‡ ุจุชุทู„ุน
348
00:27:43,080 --> 00:27:46,680
ู†ุงู‚ุต ูˆุงุญุฏ Alpha ู†ุงู‚ุต ูˆุงุญุฏ for X element in zero
349
00:27:46,680 --> 00:27:53,250
ูˆ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุงู„ุขู† ุจุนุถ ุงู„ู…ู„ุงุญุธุงุช ุงู„ุฃุฎุฑู‰ ุงู„ู„ูŠ ุจูŠู‚ูˆู„ูƒ
350
00:27:53,250 --> 00:28:01,010
ุฅูŠุงู‡ุง ุนู„ู‰ ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ุจูŠู‚ูˆู„ ุจูŠู‚ูˆู„ ู„ูƒ ุงู„ู„ูŠ ู‡ูˆ ุนู†ุฏูŠ ุฅุฐุง
351
00:28:01,010 --> 00:28:07,610
ูƒุงู†ุช Alpha ุฃูƒุจุฑ ู…ู† 0 ูุจุตูŠุฑ
352
00:28:07,610 --> 00:28:11,970
ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ Function ู…ู† X and X alpha is
353
00:28:11,970 --> 00:28:15,930
strictly increasing ุนู„ู‰ ูุชุฑุฉ 0 ูˆ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุทุจูŠุนูŠ
354
00:28:15,930 --> 00:28:19,890
ู„ู…ุง Alpha ุฃูƒุจุฑ ู…ู† 0 ู‡ูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ุงู† ุงู„ู…ู‚ุฏุฑ ู‡ุฐุง
355
00:28:19,890 --> 00:28:24,120
ุจูŠุธู„ ู…ูˆุฌุจูˆ ู‡ุฐู‡ ุฃู„ู ุฃูƒุจุฑ ู…ู† ุตูุฑ ุจูŠูƒูˆู† ุจูŠุจู‚ู‰ ุฃูƒุจุฑ ู…ู†
356
00:28:24,120 --> 00:28:27,180
ุตูุฑ ุฅุฐุง ุตุงุฑุช ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ Derivative ุฃูƒุจุฑ ู…ู†
357
00:28:27,180 --> 00:28:31,160
ุตูุฑ ุฅุฐุง ุตุงุฑุช ุนู†ุฏ ุงู„ุฏุงู„ุฉ Strictly Increasing ู„ูˆ ูƒุงู†ุช
358
00:28:31,160 --> 00:28:34,520
ุฃู„ู ุฃุตุบุฑ ู…ู† ุตูุฑ ู‡ุชุตูŠุฑ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุนูƒุณ Strictly
359
00:28:34,520 --> 00:28:38,420
Decreasing ู„ุฅู†ู‡ ู‡ุชูƒูˆู† ู‡ุฐู‡ ุณุงู„ุจุฉ ูˆ ู‡ุฐู‡ ู…ุฏู„ุฉ ู…ูˆุฌุจุฉ
360
00:28:38,420 --> 00:28:42,180
ุจุชุธู„ ู‡ุฐู‡ ูƒู„ู‡ุง ู…ูˆุฌุจุฉ ุฅุฐุง ุตุงุฑุช Strictly Decreasing
361
00:28:42,180 --> 00:28:45,360
ุนู†ุฏ ุฃู„ู ุจุชุณุงูˆูŠ ุตูุฑ ุจูŠูƒูˆู† ุงุญู†ุง ุงู„ Derivative ู„ู„ูˆุงุญุฏ
362
00:28:45,360 --> 00:28:48,880
ุงู„ู„ูŠ ู‡ูˆ ุจูŠูƒูˆู† ุนุจุงุฑุฉ ุนู† Constant Function ุงู„ู„ูŠ ู‡ูˆ
363
00:28:48,880 --> 00:28:51,300
ููŠ ุญุงู„ุฉ ุงู„ุฃู„ู ุจุชุณุงูˆูŠ ุตูุฑ
364
00:28:53,910 --> 00:29:02,970
ุงู„ุขู† ู†ูŠุฌูŠ ุงู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ู‡ูŠูƒ ุจู†ูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ ูˆุตู„ู†ุง
365
00:29:02,970 --> 00:29:09,190
ู„ุขุฎุฑ ุชุนุฑูŠู ุจุฏู‡ ูŠุนุฑู ุงู„ู„ูŠ ู‡ูˆ ุงู„ Log Function ู„ู„ุฃุณุงุณ
366
00:29:09,190 --> 00:29:13,090
a ุงุญู†ุง ุงู„ู„ูŠ ุนุฑูู†ุงู‡ ุงู„ Ln ุงู„ู„ูŠ ู‡ูˆ ู„ู„ุฃุณุงุณ e ุจู…ุนู†ู‰
367
00:29:13,090 --> 00:29:16,530
ุขุฎุฑ ูƒูŠู ุจุฏู‡ ุงุนุฑูู‡ ุงู„ุขู† ุงุญู†ุง ู„ุณู‡ ู…ุง ุนุฑูู†ุง ุงู„ุฃุณุงุณุงุช
368
00:29:16,530 --> 00:29:19,930
ู‡ุฏุง ูƒุตู…ู†ุง ุงู„ Ln ูˆ ุงู„ Exponential ุงู„ุขู† ุจุฏู†ุง ู†ุนุฑู
369
00:29:19,930 --> 00:29:25,920
ุงู„ู„ูŠ ู‡ูˆ ู†ุณู…ูŠ ุงู„ Log ุงู„ุบุงุฑูŠุซู… ู„ู„ุฃุณุงุณ A ู†ูุชุฑุถ ุฃู† A
370
00:29:25,920 --> 00:29:28,860
ุฃูƒุจุฑ ู…ู† 0 ูˆ A ู„ุง ุชุณุงูˆูŠ 1 it is sometimes useful to
371
00:29:28,860 --> 00:29:34,820
define the function Log ู„ู„ุฃุณุงุณ A ูƒู…ุงู„ูŠ ุงู„ุขู† Log A
372
00:29:34,820 --> 00:29:39,560
of X ูƒุฏู‡ ุงู„ู„ูŠ ุจูŠุณุงูˆูŠ Ln ุงู„ X ุนู„ู‰ Ln ุงู„ A ุญูŠุซ ุงู„ A
373
00:29:39,560 --> 00:29:43,940
ุนุฏุฏ ุซุงุจุช ู…ุงุดูŠ ุงู„ุญุงู„ ู‡ุฐู‡ ุงู„ุขู† ุตุงุฑุช ุงู„ู„ูŠ ู‡ูŠ ุงู„ Log
374
00:29:43,940 --> 00:29:49,540
ุงู„ุนุงู…ุฉ ู‡ูŠ ู†ูุณ ุงู„ Exponential ุจุณ ู…ุถุฑูˆุจุฉ ููŠ ุซุงุจุช ุงู„ุขู†
375
00:29:49,540 --> 00:29:52,920
ุฅุฐุง ุงู„ู€ Exponential ุงู„ุฃุตู„ูŠุฉ ุนู„ูŠู‡ุง ู‡ูˆ ู…ุนุฑู ุงู„ุขู†
376
00:29:52,920 --> 00:29:59,140
ุจูŠู‚ูˆู„ูƒ ุฅู†ู‡ ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐู‡ ุจู†ุณู…ูŠู‡ุง Log ุฃูˆ ุงู„ Logarithm
377
00:29:59,140 --> 00:30:04,620
ู„ู„ุฃุณุงุณ A ู„ูˆ ูƒุงู† ุงู„ุฃุณุงุณ E ู‡ุฐุง ุจุตูŠุฑ Ln ุงู„ E ูˆุงุญุฏ
378
00:30:04,620 --> 00:30:09,320
ุจู†ุตูŠุฑ ู†ุฑุฌุน ู„ู† ุงู„ X ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฏุงู„ุฉ ุงู„ุฃุตู„ูŠุฉ ุฅุฐุง ู„ูˆ
379
00:30:09,320 --> 00:30:14,000
ูƒุงู†ุช ุงู„ A ู‡ูŠ ุงู„ E ุจู†ุฑุฌุน ู„ู„ุฏุงู„ุฉ ุงู„ุฃุตู„ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ุฒูŠ
380
00:30:14,000 --> 00:30:17,060
ู…ุง ู‚ู„ู†ุง is called the logarithm of X to the base A
381
00:30:19,560 --> 00:30:23,400
Yields ุฏุง ุงู„ู€ Logarithm ุงู„ุนุงุฏูŠ ุงู„ุขู† ุงู„ู„ูŠ ู…ุดู‡ูˆุฑ
382
00:30:23,400 --> 00:30:28,020
ุนู†ุฏู†ุง ู„ู„ุญุณุงุจุงุช ุงู„ู„ูŠ ู‡ูˆ ู„ู„ุฃุณุงุณ ุนุดุฑุฉ ุงู„ู„ูŠ ู‡ูˆ ุจู†ุณู…ูŠ
383
00:30:28,020 --> 00:30:32,220
ุงู„ู„ูŠ ู‡ูˆ Log to the base ุนุดุฑุฉ ุฃูˆ ุงู„ู„ูŠ ุจู†ุณู…ูŠ common
384
00:30:32,220 --> 00:30:36,720
Logarithm ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุจู†ุณุชุฎุฏู…ู‡ ุนุงุฏุฉ ููŠ ุงู„ุญุณุงุจุงุช ูˆ
385
00:30:36,720 --> 00:30:41,620
ู‡ูŠูƒ ุจูƒูˆู† ุนู†ุฏู†ุง ุงุญู†ุง ุงู†ู‡ูŠู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ Section ุงู„ู„ูŠ
386
00:30:41,620 --> 00:30:46,180
ู‡ูˆ ุซู…ุงู†ูŠุฉ ุชู„ุงุชุฉ ูˆ ุจูƒูˆู† ุฎู„ุตู†ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ
387
00:30:46,180 --> 00:30:52,240
ู…ู† ุงู„ู…ุญุงุถุฑุฉ ุงู„ู„ูŠ ู‡ูˆ ู…ุง ูŠุชุนู„ู‚ ุจุงู„ .. ุงู„ู„ูŠ ู‡ูˆ ุงู„
388
00:30:52,240 --> 00:30:54,660
Logarithmic Function ูˆ ุงู„ Power Function ูˆ ุงู„
389
00:30:54,660 --> 00:31:00,040
Logarithmic ู„ู„ุฃุณุงุณ ุงู„ู„ูŠ ู‡ูˆ ุฒูŠ ู…ุง ู‚ู„ู†ุง ุงูŠู‡ ูˆ ุฅู„ู‰
390
00:31:00,040 --> 00:31:00,640
ู„ู‚ุงุก